Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Phys Eng Express ; 10(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241733

RESUMEN

This study explored the feasibility of on-couch intensity modulated radiotherapy (IMRT) planning for prostate cancer (PCa) on a cone-beam CT (CBCT)-based online adaptive RT platform without an individualized pre-treatment plan and contours. Ten patients with PCa previously treated with image-guided IMRT (60 Gy/20 fractions) were selected. In contrast to the routine online adaptive RT workflow, a novel approach was employed in which the same preplan that was optimized on one reference patient was adapted to generate individual on-couch/initial plans for the other nine test patients using Ethos emulator. Simulation CTs of the test patients were used as simulated online CBCT (sCBCT) for emulation. Quality assessments were conducted on synthetic CTs (sCT). Dosimetric comparisons were performed between on-couch plans, on-couch plans recomputed on the sCBCT and individually optimized plans for test patients. The median value of mean absolute difference between sCT and sCBCT was 74.7 HU (range 69.5-91.5 HU). The average CTV/PTV coverage by prescription dose was 100.0%/94.7%, and normal tissue constraints were met for the nine test patients in on-couch plans on sCT. Recalculating on-couch plans on the sCBCT showed about 0.7% reduction of PTV coverage and a 0.6% increasing of hotspot, and the dose difference of the OARs was negligible (<0.5 Gy). Hence, initial IMRT plans for new patients can be generated by adapting a reference patient's preplan with online contours, which had similar qualities to the conventional approach of individually optimized plan on the simulation CT. Further study is needed to identify selection criteria for patient anatomy most amenable to this workflow.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Masculino , Humanos , Estudios de Factibilidad , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia
2.
Med Phys ; 51(1): 18-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856190

RESUMEN

BACKGROUND: Online adaptive radiotherapy (ART) involves the development of adaptable treatment plans that consider patient anatomical data obtained right prior to treatment administration, facilitated by cone-beam computed tomography guided adaptive radiotherapy (CTgART) and magnetic resonance image-guided adaptive radiotherapy (MRgART). To ensure accuracy of these adaptive plans, it is crucial to conduct calculation-based checks and independent verification of volumetric dose distribution, as measurement-based checks are not practical within online workflows. However, the absence of comprehensive, efficient, and highly integrated commercial software for secondary dose verification can impede the time-sensitive nature of online ART procedures. PURPOSE: The main aim of this study is to introduce an efficient online quality assurance (QA) platform for online ART, and subsequently evaluate it on Ethos and Unity treatment delivery systems in our clinic. METHODS: To enhance efficiency and ensure compliance with safety standards in online ART, ART2Dose, a secondary dose verification software, has been developed and integrated into our online QA workflow. This implementation spans all online ART treatments at our institution. The ART2Dose infrastructure comprises four key components: an SQLite database, a dose calculation server, a report generator, and a web portal. Through this infrastructure, file transfer, dose calculation, report generation, and report approval/archival are seamlessly managed, minimizing the need for user input when exporting RT DICOM files and approving the generated QA report. ART2Dose was compared with Mobius3D in pre-clinical evaluations on secondary dose verification for 40 adaptive plans. Additionally, a retrospective investigation was conducted utilizing 1302 CTgART fractions from ten treatment sites and 1278 MRgART fractions from seven treatment sites to evaluate the practical accuracy and efficiency of ART2Dose in routine clinical use. RESULTS: With dedicated infrastructure and an integrated workflow, ART2Dose achieved gamma passing rates that were comparable to or higher than those of Mobius3D. Additionally, it significantly reduced the time required to complete pre-treatment checks by 3-4 min for each plan. In the retrospective analysis of clinical CTgART and MRgART fractions, ART2Dose demonstrated average gamma passing rates of 99.61 ± 0.83% and 97.75 ± 2.54%, respectively, using the 3%/2 mm criteria for region greater than 10% of prescription dose. The average calculation times for CTgART and MRgART were approximately 1 and 2 min, respectively. CONCLUSION: Overall, the streamlined implementation of ART2Dose notably enhances the online ART workflow, offering reliable and efficient online QA while reducing time pressure in the clinic and minimizing labor-intensive work.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Programas Informáticos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X , Dosificación Radioterapéutica
3.
Int J Radiat Oncol Biol Phys ; 118(5): 1172-1180, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147912

RESUMEN

PURPOSE: Positron emission tomography (PET)-guided radiation therapy is a novel tracked dose delivery modality that uses real-time PET to guide radiation therapy beamlets. The BIOGUIDE-X study was performed with sequential cohorts of participants to (1) identify the fluorodeoxyglucose (FDG) dose for PET-guided therapy and (2) confirm that the emulated dose distribution was consistent with a physician-approved radiation therapy plan. METHODS AND MATERIALS: This prospective study included participants with at least 1 FDG-avid targetable primary or metastatic tumor (2-5 cm) in the lung or bone. For cohort I, a modified 3 + 3 design was used to determine the FDG dose that would result in adequate signal for PET-guided therapy. For cohort II, PET imaging data were collected on the X1 system before the first and last fractions among patients undergoing conventional stereotactic body radiation therapy. PET-guided therapy dose distributions were modeled on the patient's computed tomography anatomy using the collected PET data at each fraction as input to an "emulated delivery" and compared with the physician-approved plan. RESULTS: Cohort I demonstrated adequate FDG activity in 6 of 6 evaluable participants (100.0%) with the first injected dose level of 15 mCi FDG. In cohort II, 4 patients with lung tumors and 5 with bone tumors were enrolled, and evaluable emulated delivery data points were collected for 17 treatment fractions. Sixteen of the 17 emulated deliveries resulted in dose distributions that were accurate with respect to the approved PET-guided therapy plan. The 17th data point was just below the 95% threshold for accuracy (dose-volume histogram score = 94.6%). All emulated fluences were physically deliverable. No toxicities were attributed to multiple FDG administrations. CONCLUSIONS: PET-guided therapy is a novel radiation therapy modality in which a radiolabeled tumor can act as its own fiducial for radiation therapy targeting. Emulated therapy dose distributions calculated from continuously acquired real-time PET data were accurate and machine-deliverable in tumors that were 2 to 5 cm in size with adequate FDG signal characteristics.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias Pulmonares , Humanos , Estudios Prospectivos , Tomografía de Emisión de Positrones , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X/métodos , Radiofármacos
4.
Phys Imaging Radiat Oncol ; 26: 100438, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37342208

RESUMEN

Background and Purpose: A recently developed biology-guided radiotherapy platform, equipped with positron emission tomography (PET) and computed tomography (CT), provides both anatomical and functional image guidance for radiotherapy. This study aimed to characterize performance of the kilovoltage CT (kVCT) system on this platform using standard quality metrics measured on phantom and patient images, using CT simulator images as reference. Materials and Methods: Image quality metrics, including spatial resolution/modular transfer function (MTF), slice sensitivity profile (SSP), noise performance and image uniformity, contrast-noise ratio (CNR) and low-contrast resolution, geometric accuracy, and CT number (HU) accuracy, were evaluated on phantom images. Patient images were evaluated mainly qualitatively. Results: On phantom images the MTF10% is about 0.68 lp/mm for kVCT in PET/CT Linac. The SSP agreed with nominal slice thickness within 0.7 mm. The diameter of the smallest visible target (1% contrast) is about 5 mm using medium dose mode. The image uniformity is within 2.0 HU. The geometric accuracy tests passed within 0.5 mm. Relative to CT simulator images, the noise is generally higher and the CNR is lower in PET/CT Linac kVCT images. The CT number accuracy is comparable between the two systems with maximum deviation from the phantom manufacturer range within 25 HU. On patient images, higher spatial resolution and image noise are observed on PET/CT Linac kVCT images. Conclusions: Major image quality metrics of the PET/CT Linac kVCT were within vendor-recommended tolerances. Better spatial resolution but higher noise and better/comparable low contrast visibility were observed as compared to a CT simulator when images were acquired with clinical protocols.

5.
Front Oncol ; 12: 880712, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774126

RESUMEN

In this review, we attempt to make a case for the establishment of a limited number of heavy ion cancer research and treatment facilities in the United States. Based on the basic physics and biology research, conducted largely in Japan and Germany, and early phase clinical trials involving a relatively small number of patients, we believe that heavy ions have a considerably greater potential to enhance the therapeutic ratio for many cancer types compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing technological developments and with research in physical, biological, immunological, and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier ions can be substantially improved.

6.
Front Oncol ; 12: 812961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280731

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/µm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.

7.
Med Phys ; 46(2): e37-e52, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30506898

RESUMEN

PURPOSE: To define the physical parameters needed to characterize a particle beam in order to allow intercomparison of different experiments performed using different ions at the same facility and using the same ion at different facilities. METHODS: At the request of the National Cancer Institute (NCI), a special panel was convened to review the current status of the field and to provide suggested metrics for reporting the physical parameters of particle beams to be used for biological research. A set of physical parameters and measurements that should be performed by facilities and understood and reported by researchers supported by NCI to perform pre-clinical radiobiology and medical physics of heavy ions were generated. RESULTS: Standard measures such as radiation delivery technique, beam modifiers used, nominal energy, field size, physical dose and dose rate should all be reported. However, more advanced physical measurements, including detailed characterization of beam quality by microdosimetric spectrum and fragmentation spectra, should also be established and reported. Details regarding how such data should be incorporated into Monte Carlo simulations and the proper reporting of simulation details are also discussed. CONCLUSIONS: In order to allow for a clear relation of physical parameters to biological effects, facilities and researchers should establish and report detailed physical characteristics of the irradiation beams utilized including both standard and advanced measures. Biological researchers are encouraged to actively engage facility staff and physicists in the design and conduct of experiments. Modeling individual experimental setups will allow for the reporting of the uncertainties in the measurement or calculation of physical parameters which should be routinely reported.


Asunto(s)
Radioterapia de Iones Pesados , National Cancer Institute (U.S.) , Modelos Biológicos , Método de Montecarlo , Fenómenos Físicos , Radiometría , Dosificación Radioterapéutica , Estados Unidos
8.
Int J Radiat Oncol Biol Phys ; 100(5): 1280-1288, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29397212

RESUMEN

PURPOSE: To demonstrate the feasibility of a real-time whole-brain radiation therapy (WBRT) workflow, taking advantage of contemporary radiation therapy capabilities and seeking to optimize clinical workflow for WBRT. METHODS AND MATERIALS: We developed a method incorporating the linear accelerator's on-board imaging system for patient simulation, used cone-beam computed tomography (CBCT) data for treatment planning, and delivered the first fraction of prescribed therapy, all during the patient's initial appointment. Simulation was performed in the linear accelerator vault. An acquired CBCT data set was used for scripted treatment planning protocol, providing inversely planned, automated treatment plan generation. The osseous boundaries of the brain were auto-contoured to create a target volume. Two parallel-opposed beams using field-in-field intensity modulate radiation therapy covered this target to the user-defined inferior level (C1 or C2). The method was commissioned using an anthropomorphic head phantom and verified using 100 clinically treated patients. RESULTS: Whole-brain target heterogeneity was within 95%-107% of the prescription dose, and target coverage compared favorably to standard, manually created 3-dimensional plans. For the commissioning CBCT datasets, the secondary monitor unit verification and independent 3-dimensional dose distribution comparison for computed and delivered doses were within 2% agreement relative to the scripted auto-plans. On average, time needed to complete the entire process was 35.1 ± 10.3 minutes from CBCT start to last beam delivered. CONCLUSIONS: The real-time WBRT workflow using integrated on-site imaging, planning, quality assurance, and delivery was tested and deemed clinically feasible. The design necessitates a synchronized team consisting of physician, physicist, dosimetrist, and therapists. This work serves as a proof of concept of real-time planning and delivery for other treatment sites.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Irradiación Craneana/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Flujo de Trabajo , Neoplasias Encefálicas/secundario , Tomografía Computarizada de Haz Cónico/métodos , Irradiación Craneana/instrumentación , Estudios de Factibilidad , Humanos , Aceleradores de Partículas , Fantasmas de Imagen , Dosificación Radioterapéutica , Factores de Tiempo
9.
Phys Med Biol ; 63(5): 055002, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29384493

RESUMEN

In heavy ion radiation therapy, improving the accuracy in range prediction of the ions inside the patient's body has become essential. Accurate localization of the Bragg peak provides greater conformity of the tumor while sparing healthy tissues. We investigated the use of carbon ions directly for computed tomography (carbon CT) to create the relative stopping power map of a patient's body. The Geant4 toolkit was used to perform a Monte Carlo simulation of the carbon ion trajectories, to study their lateral and angular deflections and the most likely paths, using a water phantom. Geant4 was used to create carbonCT projections of a contrast and spatial resolution phantom, with a cone beam of 430 MeV/u carbon ions. The contrast phantom consisted of cranial bone, lung material, and PMMA inserts while the spatial resolution phantom contained bone and lung material inserts with line pair (lp) densities ranging from 1.67 lp cm-1 through 5 lp cm-1. First, the positions of each carbon ion on the rear and front trackers were used for an approximate reconstruction of the phantom. The phantom boundary was extracted from this approximate reconstruction, by using the position as well as angle information from the four tracking detectors, resulting in the entry and exit locations of the individual ions on the phantom surface. Subsequent reconstruction was performed by the iterative algebraic reconstruction technique coupled with total variation minimization (ART-TV) assuming straight line trajectories for the ions inside the phantom. The influence of number of projections was studied with reconstruction from five different sets of projections: 15, 30, 45, 60 and 90. Additionally, the effect of number of ions on the image quality was investigated by reducing the number of ions/projection while keeping the total number of projections at 60. An estimation of carbon ion range using the carbonCT image resulted in improved range prediction compared to the range calculated using a calibration curve.


Asunto(s)
Algoritmos , Carbono/química , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Humanos , Método de Montecarlo
10.
Int J Radiat Oncol Biol Phys ; 100(1): 235-243, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079118

RESUMEN

PURPOSE: One of the major benefits of carbon ion therapy is enhanced biological effectiveness at the Bragg peak region. For intensity modulated carbon ion therapy (IMCT), it is desirable to use Monte Carlo (MC) methods to compute the properties of each pencil beam spot for treatment planning, because of their accuracy in modeling physics processes and estimating biological effects. We previously developed goCMC, a graphics processing unit (GPU)-oriented MC engine for carbon ion therapy. The purpose of the present study was to build a biological treatment plan optimization system using goCMC. METHODS AND MATERIALS: The repair-misrepair-fixation model was implemented to compute the spatial distribution of linear-quadratic model parameters for each spot. A treatment plan optimization module was developed to minimize the difference between the prescribed and actual biological effect. We used a gradient-based algorithm to solve the optimization problem. The system was embedded in the Varian Eclipse treatment planning system under a client-server architecture to achieve a user-friendly planning environment. We tested the system with a 1-dimensional homogeneous water case and 3 3-dimensional patient cases. RESULTS: Our system generated treatment plans with biological spread-out Bragg peaks covering the targeted regions and sparing critical structures. Using 4 NVidia GTX 1080 GPUs, the total computation time, including spot simulation, optimization, and final dose calculation, was 0.6 hour for the prostate case (8282 spots), 0.2 hour for the pancreas case (3795 spots), and 0.3 hour for the brain case (6724 spots). The computation time was dominated by MC spot simulation. CONCLUSIONS: We built a biological treatment plan optimization system for IMCT that performs simulations using a fast MC engine, goCMC. To the best of our knowledge, this is the first time that full MC-based IMCT inverse planning has been achieved in a clinically viable time frame.


Asunto(s)
Radioterapia de Iones Pesados/métodos , Método de Montecarlo , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Radioterapia de Iones Pesados/normas , Humanos , Modelos Lineales , Masculino , Tratamientos Conservadores del Órgano/métodos , Tratamientos Conservadores del Órgano/normas , Órganos en Riesgo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/radioterapia , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/normas , Efectividad Biológica Relativa , Interfaz Usuario-Computador
11.
Cancers (Basel) ; 9(6)2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28598362

RESUMEN

Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.

12.
Phys Med Biol ; 62(11): 4361-4374, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28244879

RESUMEN

High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.


Asunto(s)
Braquiterapia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Neoplasias Vaginales/radioterapia , Automatización , Femenino , Humanos , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X/métodos , Neoplasias Vaginales/diagnóstico por imagen
13.
Phys Med Biol ; 62(9): 3682-3699, 2017 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-28140352

RESUMEN

Monte Carlo (MC) simulation is considered as the most accurate method for calculation of absorbed dose and fundamental physics quantities related to biological effects in carbon ion therapy. To improve its computational efficiency, we have developed a GPU-oriented fast MC package named goCMC, for carbon therapy. goCMC simulates particle transport in voxelized geometry with kinetic energy up to 450 MeV u-1. Class II condensed history simulation scheme with a continuous slowing down approximation was employed. Energy straggling and multiple scattering were modeled. δ-electrons were terminated with their energy locally deposited. Four types of nuclear interactions were implemented in goCMC, i.e. carbon-hydrogen, carbon-carbon, carbon-oxygen and carbon-calcium inelastic collisions. Total cross section data from Geant4 were used. Secondary particles produced in these interactions were sampled according to particle yield with energy and directional distribution data derived from Geant4 simulation results. Secondary charged particles were transported following the condensed history scheme, whereas secondary neutral particles were ignored. goCMC was developed under OpenCL framework and is executable on different platforms, e.g. GPU and multi-core CPU. We have validated goCMC with Geant4 in cases with different beam energy and phantoms including four homogeneous phantoms, one heterogeneous half-slab phantom, and one patient case. For each case [Formula: see text] carbon ions were simulated, such that in the region with dose greater than 10% of maximum dose, the mean relative statistical uncertainty was less than 1%. Good agreements for dose distributions and range estimations between goCMC and Geant4 were observed. 3D gamma passing rates with 1%/1 mm criterion were over 90% within 10% isodose line except in two extreme cases, and those with 2%/1 mm criterion were all over 96%. Efficiency and code portability were tested with different GPUs and CPUs. Depending on the beam energy and voxel size, the computation time to simulate [Formula: see text] carbons was 9.9-125 s, 2.5-50 s and 60-612 s on an AMD Radeon GPU card, an NVidia GeForce GTX 1080 GPU card and an Intel Xeon E5-2640 CPU, respectively. The combined accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon ion therapy.


Asunto(s)
Radioterapia de Iones Pesados/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioisótopos de Carbono/uso terapéutico , Electrones , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica
15.
J Appl Clin Med Phys ; 17(4): 214-222, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27455482

RESUMEN

The goal of this work is to evaluate the dosimetric impact of an overshooting phenomenon in step-and-shoot IMRT delivery, and to demonstrate a novel method to mitigate the issue. Five pelvis IMRT patients treated on Varian 2100C EX linacs with larger than +4.5% phantom ion chamber point-dose difference relative to planned dose were investigated. For each patient plan, 5 fractions were delivered. DynaLog files were recorded and centi-MU pulses from dose integrator board for every control point (CP) were counted using a commercial pulse counter. The counter recorded CP MU agrees with DynaLog records, both showing an ~ 0.6MU overshoot of the first segment of every beam. The 3D patient dose was recalculated from the counter records and compared to the planned dose, showing that the overshoot resulted in on average 2.05% of PTV D95 error, and 2.49%, 2.61% and 2.45% of D1cc error for rectum, bladder, and bowel, respectively. The initial plans were then modified by inserting a specially designed MLC segment to the start of every beam. The modified plans were also delivered five times. The dose from the modified delivery was calculated using counter recorded CP MU. The corresponding Dx parameters were all within 0.31% from the original plan. IMRT QA results also show a 2.2% improvement in ion chamber point-dose agreement. The results demonstrate that the proposed plan modification method effectively eliminates the overdosage from the overshooting phenomenon.


Asunto(s)
Fantasmas de Imagen , Radiometría/métodos , Radioterapia de Intensidad Modulada/métodos , Dosimetría por Película , Humanos , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
16.
Int J Part Ther ; 2(3): 468-471, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27110586

RESUMEN

Investigation into the use of heavy ions for therapeutic purposes was initially pioneered at Lawrence Berkeley National Laboratory in the 1970s [1, 2]. More recently, however, significant advances in determining the safety and efficacy of using heavy ions in the hospital setting have been reported in Japan and Germany [3, 4]. These promising results have helped to resurrect interest in the establishment of hospital-based heavy ion therapy in the United States. In line with these efforts, world experts in the field of heavy ion therapy were invited to attend the first annual International Symposium on Ion Therapy, which was held at the University of Texas Southwestern Medical Center, Dallas, Texas, from November 12 to 14, 2014. A brief overview of the results and discussions that took place during the symposium are presented in this article.

17.
Phys Med Biol ; 61(3): 1217-37, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26788825

RESUMEN

GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the 'thin plate splines-robust point matching' (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7 ± 0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7 ± 1.8 mm and 1.6 ± 0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7 ± 2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50 ± 19%, 37 ± 11% and 28 ± 11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases with GPU acceleration. The efficiency and accuracy shown with the TPS-RPM-LTP indicate that it is a practical and promising tool for bladder dose summation in adaptive cervical cancer brachytherapy.


Asunto(s)
Algoritmos , Braquiterapia/métodos , Órganos en Riesgo/efectos de la radiación , Monitoreo de Radiación/métodos , Vejiga Urinaria/efectos de la radiación , Neoplasias del Cuello Uterino/radioterapia , Animales , Braquiterapia/efectos adversos , Femenino , Humanos , Porcinos
18.
Phys Today ; 69(11): 14-16, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29657339
19.
J Appl Clin Med Phys ; 16(4): 181­192, 2015 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-26219014

RESUMEN

The aim of this study is to compare the recent Eclipse Acuros XB (AXB) dose calculation engine with the Pinnacle collapsed cone convolution/superposition (CCC) dose calculation algorithm and the Eclipse anisotropic analytic algorithm (AAA) for stereotactic ablative radiotherapy (SAbR) treatment planning of thoracic spinal (T-spine) metastases using IMRT and VMAT delivery techniques. The three commissioned dose engines (CCC, AAA, and AXB) were validated with ion chamber and EBT2 film measurements utilizing a heterogeneous slab-geometry water phantom and an anthropomorphic phantom. Step-and-shoot IMRT and VMAT treatment plans were developed and optimized for eight patients in Pinnacle, following our institutional SAbR protocol for spinal metastases. The CCC algorithm, with heterogeneity corrections, was used for dose calculations. These plans were then exported to Eclipse and recalculated using the AAA and AXB dose calculation algorithms. Various dosimetric parameters calculated with CCC and AAA were compared to that of the AXB calculations. In regions receiving above 50% of prescription dose, the calculated CCC mean dose is 3.1%-4.1% higher than that of AXB calculations for IMRT plans and 2.8%-3.5% higher for VMAT plans, while the calculated AAA mean dose is 1.5%-2.4% lower for IMRT and 1.2%-1.6% lower for VMAT. Statistically significant differences (p < 0.05) were observed for most GTV and PTV indices between the CCC and AXB calculations for IMRT and VMAT, while differences between the AAA and AXB calculations were not statistically significant. For T-spine SAbR treatment planning, the CCC calculations give a statistically significant overestimation of target dose compared to AXB. AAA underestimates target dose with no statistical significance compared to AXB. Further study is needed to determine the clinical impact of these findings.


Asunto(s)
Algoritmos , Anisotropía , Fantasmas de Imagen , Radiocirugia/métodos , Neoplasias de la Columna Vertebral/cirugía , Neoplasias Torácicas/cirugía , Simulación por Computador , Humanos , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de la Columna Vertebral/secundario , Neoplasias Torácicas/patología
20.
J Appl Clin Med Phys ; 16(3): 5242, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103484

RESUMEN

Agreement between planned and delivered dose distributions for patient-specific quality assurance in routine clinical practice is predominantly assessed utilizing the gamma index method. Several reports, however, fundamentally question current IMRT QA practice due to poor sensitivity and specificity of the standard gamma index implementation. An alternative is to employ dose volume histogram (DVH)-based metrics. An analysis based on the AAPM TG 53 and ESTRO booklet No.7 recommendations for QA of treatment planning systems reveals deficiencies in the current "state of the art" IMRT QA, no matter which metric is selected. The set of IMRT benchmark plans were planned, delivered, and analyzed by following guidance of the AAPM TG 119 report. The recommended point dose and planar dose measurements were obtained using a PinPoint ionization chamber, EDR2 radiographic film, and a 2D ionization chamber array. Gamma index criteria {3% (global), 3 mm} and {3% (local), 3 mm} were used to assess the agreement between calculated and delivered planar dose distributions. Next, the AAPM TG 53 and ESTRO booklet No.7 recommendations were followed by dividing dose distributions into four distinct regions: the high-dose (HD) or umbra region, the high-gradient (HG) or penumbra region, the medium-dose (MD) region, and the low-dose (LD) region. A different gamma passing criteria was defined for each region, i.e., a "divide and conquer" (D&C) gamma method was utilized. The D&C gamma analysis was subsequently tested on 50 datasets of previously treated patients. Measured point dose and planar dose distributions compared favorably with TG 119 benchmark data. For all complex tests, the percentage of points passing the conventional {3% (global), 3 mm} gamma criteria was 97.2% ± 3.2% and 95.7% ± 1.2% for film and 2D ionization chamber array, respectively. By dividing 2D ionization chamber array dose measurements into regions and applying 3mm isodose point distance and variable local point dose difference criteria of 7%, 15%, 25%, and 40% for HD, HG, MD, and LD regions, respectively, a 93.4% ± 2.3% gamma passing rate was obtained. Identical criteria applied using the D&C gamma technique on 50 clinical treatment plans resulted in a 97.9% ± 2.3% gamma passing score. Based on the TG 119 standard, meeting or exceeding the benchmark results would indicate an exemplary IMRT QA program. In contrast to TG 119 analysis, a different scrutiny on the same set of data, which follows the AAPM TG 53 and ESTRO booklet No.7 guidelines, reveals a much poorer agreement between calculated and measured dose distributions with large local point dose differences within different dose regions. This observation may challenge the conventional wisdom that an IMRT QA program is producing acceptable results.


Asunto(s)
Algoritmos , Guías de Práctica Clínica como Asunto , Garantía de la Calidad de Atención de Salud/normas , Radiometría/normas , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia Conformacional/normas , Internacionalidad , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA