Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 661: 124412, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960339

RESUMEN

Process Analytical Technology (PAT) has revolutionized pharmaceutical manufacturing by providing real-time monitoring and control capabilities throughout the production process. This review paper comprehensively examines the application of PAT methodologies specifically in the production of solid active pharmaceutical ingredients (APIs). Beginning with an overview of PAT principles and objectives, the paper explores the integration of advanced analytical techniques such as spectroscopy, imaging modalities and others into solid API substance production processes. Novel developments in in-line monitoring at academic level are also discussed. Emphasis is placed on the role of PAT in ensuring product quality, consistency, and compliance with regulatory requirements. Examples from existing literature illustrate the practical implementation of PAT in solid API substance production, including work-up, crystallization, filtration, and drying processes. The review addresses the quality and reliability of the measurement technologies, aspects of process implementation and handling, the integration of data treatment algorithms and current challenges. Overall, this review provides valuable insights into the transformative impact of PAT on enhancing pharmaceutical manufacturing processes for solid API substances.

2.
Int J Pharm ; 657: 124125, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38631483

RESUMEN

Traditional operation modes, such as running the production processes at constant process settings or within a narrow design space, do not fully exploit the advantages of continuous pharmaceutical manufacturing. Integrating Quality by Control (QbC) algorithms as a standard component of production processes can mitigate the effect of diverse process disturbances and enhance process efficiency, particularly in terms of production costs and environmental footprint. This paper explores the potential of QbC algorithms for optimizing twin-screw wet granulation in the ConsiGmaTM-25 manufacturing line, specifically addressing granule size. It represents the second part of a study (Celikovic et al. (2024)) focused on granule composition. The concepts proposed in this work rely on process analytical technology (PAT) equipment for real-time monitoring of the granulation CQAs and a dynamic process model linking the granulation process parameters and the monitored CQAs. The granule size model identified via the local-linear-model-tree (LoLiMoT) algorithm is used to develop both a model predictive controller (MPC) and a granule size soft sensor. The MPC employs this model as a core component for selecting optimal granulation parameters to ensure the production of granules with target size. A digital operator assistant is developed to address disturbances that cannot be mitigated via MPC but can be eliminated by the plant operators. This study systematically outlines a workflow, starting from conceptualization, moving through simulation development, and finally ending with real-world application on a production line. In this final step, all proposed concepts are transferred to the ConsiGmaTM-25 manufacturing line, where their performance is validated through selected disturbance scenarios.


Asunto(s)
Algoritmos , Composición de Medicamentos , Tamaño de la Partícula , Control de Calidad , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Excipientes/química , Química Farmacéutica/métodos
3.
Int J Pharm ; 657: 124124, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38636678

RESUMEN

Continuous manufacturing of pharmaceuticals offers several benefits, such as increased production efficiency, enhanced product quality control, and lower environmental footprint. To fully exploit these benefits, standard operation mode (production processes with no or minimal disturbance mitigation measures) should be supported by adopting novel quality-by-control (QbC) methodologies. The paper at hand is the first part of a study focused on developing QbC algorithms for optimizing twin-screw wet granulation in the industrial manufacturing line ConsiGmaTM-25, specifically addressing granule composition. This work relies on previously established process-analytical-technology (PAT) equipment for real-time monitoring of the granule composition, i.e., the active pharmaceutical ingredient (API) and liquid content in wet granules. The developed control platform integrates model-based process control algorithms that aim to keep the API- and liquid content at target values through real-time adjustments of the process parameters. Furthermore, the platform integrates a digital operator assistant, which aims to detect and classify granulation disturbances and provides messages and instructions for the plant operator. The present manuscript systematically outlines all design steps from the development phase in the simulation environment to the final real system application and validation. The control platform's performance is demonstrated through selected test scenarios on the ConsiGmaTM-25 manufacturing line. The obtained results indicate improved disturbance robustness and an increase in intermediate/final product quality (compared to conventional operating modes): The process control algorithms successfully maintained the API- and liquid content at target values despite process disturbances. Furthermore, realistic disturbances (feeder, pump, and material) were accurately detected and classified by the digital assistant algorithm. The information was provided through a user interface, offering real-time support for plant personnel.


Asunto(s)
Algoritmos , Composición de Medicamentos , Control de Calidad , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Excipientes/química , Tamaño de la Partícula , Química Farmacéutica/métodos
4.
Int J Pharm ; 641: 123038, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37182794

RESUMEN

ConsiGmaTM-25 is a continuous production plant integrating a twin-screw granulation, fluid bed drying, granule conditioning, and a tableting unit. The particle size distribution (PSD), active pharmaceutical ingredient (API) content, and liquid content of wet granules after twin-screw granulation affect the quality of intermediate and final products. This paper proposes methods for real-time monitoring of these quantities and control-oriented modeling of the granulator. The PSD of wet granules is monitored via an in-line process analytical technology (PAT) probe based on the spatial velocimetry principle. The algorithm for signal processing and evaluation of PSD characteristics is developed and applied to the acquired PSD data. A dynamic process model predicting PSD characteristics from granulation parameters is trained via the local linear model tree (LoLiMoT) approach. The experimental data required for the model training are collected via systematically designed excitation runs. Finally, the performance of the identified model is examined and verified by means of a new set of validation runs. Furthermore, an in-line PAT probe based on Raman spectroscopy is developed and integrated after the granulator. The API- and liquid content of produced wet granules are evaluated from the spectral data by means of chemometric modeling, and chemometric models are validated on a separate set of experimental data. The solutions proposed in this research can be used as a reliable (and necessary) basis for the development of advanced quality-by-design control concepts (e.g., PSD process control). Such concepts would ultimately improve the ConsiGmaTM-25 process performance in terms of robustness against disturbances and quality of intermediate and final products.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Tecnología Farmacéutica , Tecnología Farmacéutica/métodos , Espectrometría Raman , Comprimidos , Algoritmos , Tamaño de la Partícula , Composición de Medicamentos/métodos
5.
Int J Pharm ; 613: 121408, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34952147

RESUMEN

The implementation of continuous pharmaceutical manufacturing requires advanced control strategies rather than traditional end product testing or an operation within a small range of controlled parameters. A high level of automation based on process models and hierarchical control concepts is desired. The relevant tools that have been developed and successfully tested in academic and industrial environments in recent years are now ready for utilization on the commercial scale. To date, the focus in Process Analytical Technology (PAT) has mainly been on achieving process understanding and quality control with the ultimate goal of real-time release testing (RTRT). This work describes the workflow for the development of an in-line monitoring strategy to support PAT-based real-time control actions and its integration into solid dosage manufacturing. All stages are discussed in this paper, from process analysis and definition of the monitoring task to technology assessment and selection, its process integration and the development of data acquisition.


Asunto(s)
Tecnología Farmacéutica , Control de Calidad
6.
Int J Pharm X ; 3: 100101, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34755105

RESUMEN

The presence of particulate matter in parenteral products is a major concern since it affects the patients' safety and is one of the main reasons for product recalls. Conventional quality control is based on a visual inspection, which is a labour-intensive task. Limited to clear solutions and the surface of lyophilised products, it cannot be applied to opaque containers. This study assesses the application of X-ray imaging for detecting the particulate matter in a pharmaceutical lyophilized product. The most common types of particulates (i.e., steel, glass, lyo stopper, polymers and organics in different size classes) were intentionally spiked in vials. After optimizing all relevant parameters of the X-ray set-up, all classes of particulates were detected. At the same time, due to contrast enhancement, the inherent structures of lyophilized cake became obvious. This work addresses the potential and limits of X-ray technology in that regard, paving the way for automated image-based particulate matter detection. Moreover, this paper discusses using this approach to predict critical quality attributes (CQAs) of the drug product based on the cake structure attributes.

7.
Pharmaceutics ; 12(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599822

RESUMEN

To avoid any type of cross-contamination, residue-free production equipment is of utmost importance in the pharmaceutical industry. The equipment cleaning for continuous processes such as hot melt extrusion (HME), which has recently gained popularity in pharmaceutical applications, necessitates extensive manual labour and costs. The present work tackles the HME cleaning issue by investigating two cleaning strategies following the extrusion of polymeric formulations of a hormonal drug and for a sustained release formulation of a poorly soluble drug. First, an in-line quantification by means of UV-Vis spectroscopy was successfully implemented to assess very low active pharmaceutical ingredient (API) concentrations in the extrudates during a cleaning procedure for the first time. Secondly, a novel in-situ solvent-based cleaning approach was developed and its usability was evaluated and compared to a polymer-based cleaning sequence. Comparing the in-line data to typical swab and rinse tests of the process equipment indicated that inaccessible parts of the equipment were still contaminated after the polymer-based cleaning procedure, although no API was detected in the extrudate. Nevertheless, the novel solvent-based cleaning approach proved to be suitable for removing API residue from the majority of problematic equipment parts and can potentially enable a full API cleaning-in-place of a pharmaceutical extruder for the first time.

8.
J Pharm Sci ; 109(8): 2454-2463, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353452

RESUMEN

Isolators for aseptic filling of biopharmaceuticals and vaccine products are commonly sanitized by vaporized hydrogen peroxide (VHP). However, remaining traces of H2O2 may contaminate the solution and cause oxidative degradation of the pharmaceutical products. The present report aims to establish a thorough understanding of the factors influencing H2O2 adsorption on empty glass intended for pharmaceutical product filling. A lab-scale miniaturized set-up that mimics the VHP- based isolator decontamination process was used. A fractional factorial design of experiment (DoE) was performed including relative humidity (RH), VHP concentration and exposure time as variables. The results revealed that VHP concentration and RH both impacts significantly the extent of H2O2 adsorption on the surface of glass vials and rubber stoppers. The lower extent of H2O2 adsorption at elevated RH implies the existence of competitive co-adsorption. Thus, adsorbed H2O2 may be removed more efficiently from the isolator after the decontamination phase by insufflating air with a high %RH rate during the isolator's aeration phase. The understanding gained from the present set-up can be applied to optimize the design of isolator decontamination cycles and evaluate the trade-off between process performance and the resulting product quality.


Asunto(s)
Productos Biológicos , Peróxido de Hidrógeno , Adsorción , Descontaminación , Vidrio , Oxidación-Reducción
9.
Eur J Pharm Sci ; 142: 105097, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31648048

RESUMEN

The objective of this study was to develop a novel closed-loop controlled continuous tablet manufacturing line, which first uses hot melt extrusion (HME) to produce pellets based on API and a polymer matrix. Such systems can be used to make complex pharmaceutical formulations, e.g., amorphous solid dispersions of poorly soluble APIs. The pellets are then fed to a direct compaction (DC) line blended with an external phase and tableted continuously. Fully-automated processing requires advanced control strategies, e.g., for reacting to raw material variations and process events. While many tools have been proposed for in-line process monitoring and real-time data acquisition, establishing real-time automated feedback control based on in-process control strategies remains a challenge. Control loops were implemented to assess the quality attributes of intermediates and product and to coordinate the mass flow rate between the unit operations. Feedback control for the blend concentration, strand temperature and pellet thickness was accomplished via proportional integral derivative (PID) controllers. The tablet press hopper level was controlled using a model predictive controller. To control the mass flow rates in all unit operations, several concepts were developed, with the tablet press, the extruder or none assigned to be the master unit of the line, and compared via the simulation.


Asunto(s)
Comprimidos/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Tecnología de Extrusión de Fusión en Caliente/métodos , Calor , Polímeros/química , Tecnología Farmacéutica/métodos
10.
Pharm Dev Technol ; 24(6): 739-750, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30821571

RESUMEN

An undesirable characteristic in lyophilized parenteral products is the potential presence of particulate matter in the final product, which may affect patient safety. In this study, quality risk management tools described in the International Conference on Harmonization Guideline Q9 were used to estimate the risks for a pharmaceutical manufacturing line, based on three critical quality attributes: (1) visible particulate matter; (2) lyo-cake collapse traces; and (3) lyo-cake melt-back traces. Together with a Process Failure Mode Effect Analysis (PFMEA), an input-output analysis of the individual unit operations identified seven major material classes of extrinsic particulate matter. In addition to the process assessment, an experimental investigation of the location of impurities in lyophilized products was performed. To that end, intentionally contaminated vials were examined to locate the particulate matter and its possible migration. The results emphasize the importance of a full transmission mode release testing since the particles may enter the interior of the lyo-cake. A theoretical explanation of the observed impurity locations is provided.


Asunto(s)
Contaminación de Medicamentos , Liofilización/métodos , Material Particulado/análisis , Preparaciones Farmacéuticas/química , Contaminación de Medicamentos/prevención & control , Embalaje de Medicamentos/métodos , Embalaje de Medicamentos/normas , Liofilización/normas , Control de Calidad
11.
Pharm Res ; 35(7): 135, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29736628

RESUMEN

PURPOSE: The effect of different irradiation doses on the structure and activity of lyophilized powders of Hen Egg-White Lysozyme (HEWL) and alcohol dehydrogenase (ADH) was investigated using these substances as models for robust and sensitive proteins, respectively. Three doses were selected to cover the ranges of radio-sterilization (25kGy), treatment of blood products (25Gy) and annual background radiation dose (approximately 2mGy). The results offer an initial screening of different irradiation doses and support the development of X-ray imaging methods as non-destructive process analytical technology (PAT) tools for detecting the visible particulate matters in such products. METHODS: HEWL and ADH were exposed to X-rays in the solid state. The effect of irradiation was determined directly after irradiation and after storage. Structural changes and degradation were investigated using SAXS, SDS-PAGE and HPLC-MS. Protein functionality was assessed via activity assays. RESULTS: Lower irradiation doses of 25Gy and 2mGy had no significant impact on the structure and enzyme activity. The dose of 25kGy caused a significant decrease in the enzyme activity and structural changes immediately after irradiation of ADH and after storage of irradiated HEWL at -20°C. CONCLUSION: The results emphasize the importance of careful selection of radiation doses for development of X-ray imaging methods as PAT tools inspection of solid biopharmaceutical products.


Asunto(s)
Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/fisiología , Muramidasa/química , Muramidasa/fisiología , Dosis de Radiación , Alcohol Deshidrogenasa/efectos de la radiación , Animales , Muramidasa/efectos de la radiación , Dispersión del Ángulo Pequeño , Rayos X
12.
J Phys Chem A ; 117(46): 11866-73, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23895106

RESUMEN

We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (He(N)). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on He(N). The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*­He(m), m = 1­3) formation process in the Li­He(N) system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay­Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali­He(N) systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu(+)). The excitation spectrum of the 23Πg(ν' = 0­11) ← 13Σu(+)(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied.

13.
Phys Chem Chem Phys ; 14(43): 15158-65, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23047686

RESUMEN

In this work we apply density-functional theory to simulate a double-dotation of He-clusters with Rb and Xe atoms. We investigate the influence of the He droplet environment on the weak van der Waals interaction between xenon and rubidium. The heliophilic Xe resides inside the droplet, while the heliophobic Rb stays on its surface. The effect of this spatial separation, the stability of the system and its properties are discussed in the context of future experiments.

14.
J Phys Chem A ; 115(25): 7065-70, 2011 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-21428378

RESUMEN

Hyperfine resolved electron spin resonance (ESR) measurements of single rubidium ((87)Rb) atoms isolated on superfluid helium nanodroplets are presented. In accordance with our previous work on (85)Rb, we find a relative increase of the hyperfine constant a(HFS) by about 400 ppm, depending on the size of the droplets. In order to optimize the ESR signal intensities, the processes of optical pumping of Rb atoms on helium droplets and of optical detection of the ESR transitions are investigated in detail. Both the laser intensity and polarization influences the ESR signal intensities. A simple model for optical pumping of Rb atoms on helium droplets is presented, which agrees well with the experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...