RESUMEN
Bovine colostrum contains compounds, which provide passive immune protection from mother to newborn calves. Little is known about cytokine levels and their role in bovine colostrum. Moreover, the capacity of bovine colostrum cells to mount specific immune responses after natural exposure to bovine tuberculosis (bTB) antigens in dairy herds has not been studied, thus far. The purpose of this study was to identify biomarkers for bTB infection measurable in bovine colostrum. The present study reveals that isolated-immune colostrum cells can mount a specific immune response against bTB antigens, by measuring the novo IFN-γ release in cell culture. We found that IFN-γ levels in the responders (Bov+) to bTB antigen were higher than in non-responders (Bov-). On the other hand, proinflammatory cytokines contained in colostrum's whey were tested in Tuberculin Skin Test (TST) reactor (TST+) and non-reactor (TST-) animals to assess their potential role as biomarker. We observed that IFN-γ levels were lower or undetectable, as opposed to IL4 levels were measurable, the TNF-α level was higher in TST- than TST+, while IL-6 levels showed the opposite reaction and with no statistical significance. Moreover, IL-1α mRNA expression levels were higher in colostrum mononuclear cells (CMC) in Bov+ cattle. Collectively, these data suggest that the differential expression of pro and anti-inflammatory cytokines could have relevant value to diagnose bTB in cattle.