Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36712037

RESUMEN

The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

2.
Front Mol Neurosci ; 12: 252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827421

RESUMEN

Neuronal Ca2+ sensor proteins (NCS) transduce changes in Ca2+ homeostasis into altered signaling and neuronal function. NCS-1 activity has emerged as important for neuronal viability and pathophysiology. The progressive degeneration of dopaminergic (DA) neurons, particularly within the Substantia nigra (SN), is the hallmark of Parkinson's disease (PD), causing its motor symptoms. The activity-related Ca2+ homeostasis of SN DA neurons, mitochondrial dysfunction, and metabolic stress promote neurodegeneration and PD. In contrast, NCS-1 in general has neuroprotective effects. The underlying mechanisms are unclear. We analyzed transcriptional changes in SN DA neurons upon NCS-1 loss by combining UV-laser microdissection and RT-qPCR-approaches to compare expression levels of a panel of PD and/or Ca2+-stress related genes from wildtype and NCS-1 KO mice. In NCS-1 KO, we detected significantly lower mRNA levels of mitochondrially coded ND1, a subunit of the respiratory chain, and of the neuron-specific enolase ENO2, a glycolytic enzyme. We also detected lower levels of the mitochondrial uncoupling proteins UCP4 and UCP5, the PARK7 gene product DJ-1, and the voltage-gated Ca2+ channel Cav2.3 in SN DA neurons from NCS-1 KO. Transcripts of other analyzed uncoupling proteins (UCPs), mitochondrial Ca2+ transporters, PARK genes, and ion channels were not altered. As Cav channels are linked to regulation of gene expression, metabolic stress and degeneration of SN DA neurons in PD, we analyzed Cav2.3 KO mice, to address if the transcriptional changes in NCS-1 KO were also present in Cav.2.3 KO, and thus probably correlated with lower Cav2.3 transcripts. However, in SN DA neurons from Cav2.3 KO mice, ND1 mRNA as well as genomic DNA levels were elevated, while ENO2, UCP4, UCP5, and DJ-1 transcript levels were not altered. In conclusion, our data indicate a possible novel function of NCS-1 in regulating gene transcription or stabilization of mRNAs in SN DA neurons. Although we do not provide functional data, our findings at the transcript level could point to impaired ATP production (lower ND1 and ENO2) and elevated metabolic stress (lower UCP4, UCP5, and DJ-1 levels) in SN DA neurons from NCS-1 KO mice. We speculate that NCS-1 is involved in stimulating ATP synthesis, while at the same time controlling mitochondrial metabolic stress, and in this way could protect SN DA neurons from degeneration.

3.
Nat Commun ; 10(1): 5094, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31704946

RESUMEN

Degeneration of dopaminergic neurons in the substantia nigra causes the motor symptoms of Parkinson's disease. The mechanisms underlying this age-dependent and region-selective neurodegeneration remain unclear. Here we identify Cav2.3 channels as regulators of nigral neuronal viability. Cav2.3 transcripts were more abundant than other voltage-gated Ca2+ channels in mouse nigral neurons and upregulated during aging. Plasmalemmal Cav2.3 protein was higher than in dopaminergic neurons of the ventral tegmental area, which do not degenerate in Parkinson's disease. Cav2.3 knockout reduced activity-associated nigral somatic Ca2+ signals and Ca2+-dependent after-hyperpolarizations, and afforded full protection from degeneration in vivo in a neurotoxin Parkinson's mouse model. Cav2.3 deficiency upregulated transcripts for NCS-1, a Ca2+-binding protein implicated in neuroprotection. Conversely, NCS-1 knockout exacerbated nigral neurodegeneration and downregulated Cav2.3. Moreover, NCS-1 levels were reduced in a human iPSC-model of familial Parkinson's. Thus, Cav2.3 and NCS-1 may constitute potential therapeutic targets for combatting Ca2+-dependent neurodegeneration in Parkinson's disease.


Asunto(s)
Envejecimiento/genética , Canales de Calcio Tipo R/genética , Proteínas de Transporte de Catión/genética , Supervivencia Celular/genética , Neuronas Dopaminérgicas/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/genética , Enfermedad de Parkinson/genética , Envejecimiento/metabolismo , Animales , Canales de Calcio Tipo R/metabolismo , Señalización del Calcio , Proteínas de Transporte de Catión/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Ratones Noqueados , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Regulación hacia Arriba , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
4.
Toxins (Basel) ; 11(6)2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212818

RESUMEN

MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 µM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin's action on acetylcholine release at mammalian neuromuscular junctions.


Asunto(s)
Serpientes de Coral , Venenos Elapídicos/toxicidad , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/toxicidad , Animales , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/fisiología , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Oocitos/fisiología , Fosfolipasas A2 , Xenopus
5.
Front Mol Neurosci ; 12: 78, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001084

RESUMEN

Neuronal calcium sensor-1 (NCS-1) knockout (KO) in mice (NCS-1-/- mice) evokes behavioral phenotypes ranging from learning deficits to avolition and depressive-like behaviors. Here, we showed that with the onset of adulthood NCS-1-/- mice gain considerable weight. Adult NCS-1-/- mice are obese, especially when fed a high-fat diet (HFD), are hyperglycemic and hyperinsulinemic and thus develop a diabetes type 2 phenotype. In comparison to wild type (WT) NCS-1-/- mice display a significant increase in adipose tissue mass. NCS-1-/- adipocytes produce insufficient serum concentrations of resistin and adiponectin. In contrast to WT littermates, adipocytes of NCS-1-/- mice are incapable of up-regulating insulin receptor (IR) concentration in response to HFD. Thus, HFD-fed NCS-1-/- mice exhibit in comparison to WT littermates a significantly reduced IR expression, which may explain the pronounced insulin resistance observed especially with HFD-fed NCS-1-/- mice. We observed a direct correlation between NCS-1 and IR concentrations in the adipocyte membrane and that NCS-1 can be co-immunoprecipitated with IR indicating a direct interplay between NCS-1 and IR. We propose that NCS-1 plays an important role in adipocyte function and that NCS-1 deficiency gives rise to obesity and diabetes type 2 in adult mice. Given the association of altered NCS-1 expression with behaviorial abnormalities, NCS-1-/- mice may offer an interesting perspective for studying in a mouse model a potential genetic link between some psychiatric disorders and the risk of being obese.

6.
Biophys J ; 112(1): 99-108, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28076820

RESUMEN

Ion conduction across the cellular membrane requires the simultaneous opening of activation and inactivation gates of the K+ channel pore. The bacterial KcsA channel has served as a powerful system for dissecting the structural changes that are related to four major functional states associated with K+ gating. Yet, the direct observation of the full gating cycle of KcsA has remained structurally elusive, and crystal structures mimicking these gating events require mutations in or stabilization of functionally relevant channel segments. Here, we found that changes in lipid composition strongly increased the KcsA open probability. This enabled us to probe all four major gating states in native-like membranes by combining electrophysiological and solid-state NMR experiments. In contrast to previous crystallographic views, we found that the selectivity filter and turret region, coupled to the surrounding bilayer, were actively involved in channel gating. The increase in overall steady-state open probability was accompanied by a reduction in activation-gate opening, underscoring the important role of the surrounding lipid bilayer in the delicate conformational coupling of the inactivation and activation gates.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Membrana Dobles de Lípidos/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Modelos Moleculares , Conformación Proteica
7.
Behav Brain Res ; 301: 213-25, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26738968

RESUMEN

Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior.


Asunto(s)
Dopamina/metabolismo , Motivación/fisiología , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/metabolismo , Núcleo Accumbens/metabolismo , Anfetamina/farmacología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Clásico/fisiología , Conducta Alimentaria/fisiología , Preferencias Alimentarias/fisiología , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Proteínas Sensoras del Calcio Neuronal/genética , Neuropéptidos/genética , Respuesta de Saciedad/fisiología , Técnicas de Cultivo de Tejidos
8.
Proc Natl Acad Sci U S A ; 112(8): E891-900, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675485

RESUMEN

GABAA receptors shape synaptic transmission by modulating Cl(-) conductance across the cell membrane. Remarkably, animal toxins that specifically target GABAA receptors have not been identified. Here, we report the discovery of micrurotoxin1 (MmTX1) and MmTX2, two toxins present in Costa Rican coral snake venom that tightly bind to GABAA receptors at subnanomolar concentrations. Studies with recombinant and synthetic toxin variants on hippocampal neurons and cells expressing common receptor compositions suggest that MmTX1 and MmTX2 allosterically increase GABAA receptor susceptibility to agonist, thereby potentiating receptor opening as well as desensitization, possibly by interacting with the α(+)/ß(-) interface. Moreover, hippocampal neuron excitability measurements reveal toxin-induced transitory network inhibition, followed by an increase in spontaneous activity. In concert, toxin injections into mouse brain result in reduced basal activity between intense seizures. Altogether, we characterized two animal toxins that enhance GABAA receptor sensitivity to agonist, thereby establishing a previously unidentified class of tools to study this receptor family.


Asunto(s)
Venenos Elapídicos/farmacología , Elapidae/metabolismo , Péptidos/farmacología , Receptores de GABA-A/metabolismo , Secuencia de Aminoácidos , Animales , Venenos Elapídicos/química , Células HEK293 , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Cinética , Masculino , Ratones , Datos de Secuencia Molecular , Mutación/genética , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Péptidos/química , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores de GABA-A/química , Receptores de GABA-A/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Xenopus
9.
Cell Rep ; 10(3): 370-382, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600872

RESUMEN

The T-type calcium channel Cav3.2 emerges as a key regulator of sensory functions, but its expression pattern within primary afferent neurons and its contribution to modality-specific signaling remain obscure. Here, we elucidate this issue using a unique knockin/flox mouse strain wherein Cav3.2 is replaced by a functional Cav3.2-surface-ecliptic GFP fusion. We demonstrate that Cav3.2 is a selective marker of two major low-threshold mechanoreceptors (LTMRs), Aδ- and C-LTMRs, innervating the most abundant skin hair follicles. The presence of Cav3.2 along LTMR-fiber trajectories is consistent with critical roles at multiple sites, setting their strong excitability. Strikingly, the C-LTMR-specific knockout uncovers that Cav3.2 regulates light-touch perception and noxious mechanical cold and chemical sensations and is essential to build up that debilitates allodynic symptoms of neuropathic pain, a mechanism thought to be entirely A-LTMR specific. Collectively, our findings support a fundamental role for Cav3.2 in touch/pain pathophysiology, validating their critic pharmacological relevance to relieve mechanical and cold allodynia.

10.
Structure ; 22(11): 1582-94, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25441029

RESUMEN

Kv7 channels tune neuronal and cardiomyocyte excitability. In addition to the channel membrane domain, they also have a unique intracellular C-terminal (CT) domain, bound constitutively to calmodulin (CaM). This CT domain regulates gating and tetramerization. We investigated the structure of the membrane proximal CT module in complex with CaM by X-ray crystallography. The results show how the CaM intimately hugs a two-helical bundle, explaining many channelopathic mutations. Structure-based mutagenesis of this module in the context of concatemeric tetramer channels and functional analysis along with in vitro data lead us to propose that one CaM binds to one individual protomer, without crosslinking subunits and that this configuration is required for proper channel expression and function. Molecular modeling of the CT/CaM complex in conjunction with small-angle X-ray scattering suggests that the membrane proximal region, having a rigid lever arm, is a critical gating regulator.


Asunto(s)
Calmodulina/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Canal de Potasio KCNQ1/metabolismo , Modelos Moleculares , Mutación , Multimerización de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño
11.
J Biomol NMR ; 60(2-3): 157-68, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25284462

RESUMEN

Dynamic nuclear polarization (DNP) has become a powerful method to enhance spectroscopic sensitivity in the context of magnetic resonance imaging and nuclear magnetic resonance spectroscopy. We show that, compared to DNP at lower field (400 MHz/263 GHz), high field DNP (800 MHz/527 GHz) can significantly enhance spectral resolution and allows exploitation of the paramagnetic relaxation properties of DNP polarizing agents as direct structural probes under magic angle spinning conditions. Applied to a membrane-embedded K(+) channel, this approach allowed us to refine the membrane-embedded channel structure and revealed conformational substates that are present during two different stages of the channel gating cycle. High-field DNP thus offers atomic insight into the role of molecular plasticity during the course of biomolecular function in a complex cellular environment.


Asunto(s)
Proteínas Bacterianas/química , Campos Magnéticos , Resonancia Magnética Nuclear Biomolecular , Canales de Potasio/química , Isótopos de Carbono , Activación del Canal Iónico , Solventes , Temperatura
12.
PLoS One ; 9(9): e104692, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25181038

RESUMEN

Members of the P2X family of ligand-gated cation channels (P2RX) are expressed by various cell types including neurons, smooth- and cardiac muscle cells, and leukocytes. The channels mediate signalling in response to extracellular ATP. Seven subunit isoforms (P2RX1-P2RX7) have been identified and these can assemble as homo- and heterotrimeric molecules. In humans, P2RX5 exists as a natural deletion mutant lacking amino acids 328-349 of exon 10, which are part of transmembrane (TM) 2 and pre-TM2 regions in other organisms like rat, chicken and zebrafish. We show that P2RX5 gene expression of human T lymphocytes is upregulated during activation. P2RX5 is recruited to the cell surface. P2RX5-siRNA-transfected CD4+ T cells produced twofold more IL-10 than controls. Surface and intracellular P2RX5 expression was upregulated in activated antigen-specific CD4+ T cell clones. These data indicate a functional role of the human P2RX5 splice variant in T cell activation and immunoregulation.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Activación de Linfocitos/inmunología , Proteínas Mutantes/metabolismo , Receptores Purinérgicos P2X5/genética , Regulación hacia Arriba , Empalme Alternativo/genética , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Células Clonales , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Interleucina-10/metabolismo , Subgrupos Linfocitarios/inmunología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Purinérgicos P2X5/metabolismo , Regulación hacia Arriba/genética
13.
J Cell Sci ; 127(Pt 18): 3943-55, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25037568

RESUMEN

KCNQ1 and KCNE1 co-assembly generates the I(KS) K(+) current, which is crucial to the cardiac action potential repolarization. Mutations in their corresponding genes cause long QT syndrome (LQT) and atrial fibrillation. The A-kinase anchor protein, yotiao (also known as AKAP9), brings the I(KS) channel complex together with signaling proteins to achieve regulation upon ß1-adrenergic stimulation. Recently, we have shown that KCNQ1 helix C interacts with the KCNE1 distal C-terminus. We postulated that this interface is crucial for I(KS) channel modulation. Here, we examined the yet unknown molecular mechanisms of LQT mutations located at this intracellular intersubunit interface. All LQT mutations disrupted the internal KCNQ1-KCNE1 intersubunit interaction. LQT mutants in KCNQ1 helix C led to a decreased current density and a depolarizing shift of channel activation, mainly arising from impaired phosphatidylinositol-4,5-bisphosphate (PIP2) modulation. In the KCNE1 distal C-terminus, the LQT mutation P127T suppressed yotiao-dependent cAMP-mediated upregulation of the I(KS) current, which was caused by reduced KCNQ1 phosphorylation at S27. Thus, KCNQ1 helix C is important for channel modulation by PIP2, whereas the KCNE1 distal C-terminus appears essential for the regulation of IKS by yotiao-mediated PKA phosphorylation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Síndrome de QT Prolongado/genética , Mutación Missense , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Humanos , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/enzimología , Síndrome de QT Prolongado/metabolismo , Fosforilación , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , Estructura Secundaria de Proteína
14.
Curr Opin Pharmacol ; 15: 68-73, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24721656

RESUMEN

The non-selective Transient Receptor Potential Melastatin 4 (TRPM4) cation channel is abundantly expressed in cardiac cells, being involved in several aspects of cardiac rhythmicity, including cardiac conduction, pace making and action-potential repolarization. Dominantly inherited mutations in the TRPM4 gene are associated with the cardiac bundle-branch disorder progressive familial heart block type I (PFHBI) and isolated cardiac conduction disease (ICCD) giving rise to atrio-ventricular conduction block (AVB), right bundle branch block, bradycardia, and the Brugada syndrome. The mutant phenotypes closely resemble those associated with mutations in the SCN5A gene, encoding the voltage-gated Na(+) channel NaV1.5. These observations and the unexpected partnership with sulfonylurea-receptors (SURs) makes the TRPM4 channel a promising novel target for treatment of cardiac disorders.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Canales Catiónicos TRPM/fisiología , Animales , Sistema Cardiovascular/metabolismo , Humanos , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
15.
J Physiol ; 592(12): 2563-74, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24687584

RESUMEN

The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKß1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKß1 knockout (BKß1(-/-)) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKß1(-/-) mice independent of genetic background, BKß1(-/-) strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKß1(+/+) controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKß1(-/-) strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKß1(+/+) strain A level. In contrast, loss of BKß1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKß1 expression increased blood pressure in BKß1(-/-) strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways.


Asunto(s)
Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Músculo Liso/fisiología , Aldosterona/sangre , Animales , Aorta Torácica/fisiología , Presión Sanguínea/fisiología , Técnicas In Vitro , Riñón/fisiología , Ratones Transgénicos , Células Musculares/fisiología , Oocitos/fisiología , Xenopus
17.
J Neurosci ; 33(42): 16729-40, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133274

RESUMEN

We investigated the subthreshold properties of an erg (ether-à-go-go-related gene) K(+) current in Purkinje cells of neonatal mice. Action potentials recorded from Purkinje cells in cerebellar slices exhibited a decreased threshold potential and increased frequency of spontaneous and repetitive activity following application of the specific erg channel blocker E-4031. Accommodation was absent before and after drug application. The erg current of these Purkinje cells activated at membrane potentials near -60 mV and exhibited fast gating kinetics. The functional importance of fast gating subthreshold erg channels in Purkinje cells was corroborated by comparing the results of action potential clamp experiments with erg1a, erg1b, erg2, and erg3 currents heterologously expressed in HEK cells. Computer simulations based on a NEURON model of Purkinje cells only reproduced the effects of the native erg current when an erg channel conductance like that of erg3 was included. Experiments with subunit-sensitive toxins (BeKm-1, APETx1) indicated that erg channels in Purkinje cells are presumably mediated by heteromeric erg1/erg3 or modified erg1 channels. Following mGluR1 activation, the native erg current was reduced by ∼70%, brought about by reduction of the maximal erg current and a shift of the activation curve to more positive potentials. The Purkinje cell erg current contributed to the sustained current component of the biphasic mGluR1 response. Activation of mGluR1 by the agonist 3,4-dihydroxyphenylglycol increased Purkinje cell excitability, similar to that induced by E-4031. The results indicated that erg currents can be modulated and may contribute to the mGluR1-induced plasticity changes in Purkinje cells.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Potenciales de la Membrana/fisiología , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Potenciales de Acción/fisiología , Animales , Cerebelo/metabolismo , Venenos de Cnidarios/farmacología , Simulación por Computador , Agonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Modelos Neurológicos , Receptores de Glutamato Metabotrópico/agonistas , Venenos de Escorpión/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos de Guayano
18.
Proc Natl Acad Sci U S A ; 110(32): 13008-13, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23882077

RESUMEN

Potassium (i.e., K(+)) channels allow for the controlled and selective passage of potassium ions across the plasma membrane via a conserved pore domain. In voltage-gated K(+) channels, gating is the result of the coordinated action of two coupled gates: an activation gate at the intracellular entrance of the pore and an inactivation gate at the selectivity filter. By using solid-state NMR structural studies, in combination with electrophysiological experiments and molecular dynamics simulations, we show that the turret region connecting the outer transmembrane helix (transmembrane helix 1) and the pore helix behind the selectivity filter contributes to K(+) channel inactivation and exhibits a remarkable structural plasticity that correlates to K(+) channel inactivation. The transmembrane helix 1 unwinds when the K(+) channel enters the inactivated state and rewinds during the transition to the closed state. In addition to well-characterized changes at the K(+) ion coordination sites, this process is accompanied by conformational changes within the turret region and the pore helix. Further spectroscopic and computational results show that the same channel domain is critically involved in establishing functional contacts between pore domain and the cellular membrane. Taken together, our results suggest that the interaction between the K(+) channel turret region and the lipid bilayer exerts an important influence on the selective passage of potassium ions via the K(+) channel pore.


Asunto(s)
Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Canales de Potasio/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Femenino , Activación del Canal Iónico/genética , Canal de Potasio Kv1.3/química , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Canales de Potasio/genética , Canales de Potasio/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Xenopus
19.
J Am Chem Soc ; 135(10): 3983-8, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23425320

RESUMEN

We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsA-Kv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while KcsA activity is critically modulated by the specific and cooperative binding of anionic nonannular lipids close to the channel's selectivity filter, the influence of nonannular lipid binding on KcsA-Kv1.3 is much reduced. The diminished impact of specific lipid binding on KcsA-Kv1.3 results from a point-mutation at the corresponding nonannular lipid binding site leading to a salt-bridge between adjacent KcsA-Kv1.3 subunits, which is conserved in many voltage-gated potassium channels and prevents strong nonannular lipid binding to the pore domain. Our findings elucidate how protein-lipid and protein-protein interactions modulate K(+) channel activity. The combination of MD, NMR, and functional studies as shown here may help to dissect the structural and dynamical processes that are critical for the functioning of larger membrane proteins, including Kv channels in a membrane setting.


Asunto(s)
Proteínas Bacterianas/química , Canal de Potasio Kv1.3/química , Lípidos/química , Canales de Potasio/química , Sitios de Unión , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
20.
Channels (Austin) ; 7(6): 473-82, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24722265

RESUMEN

Tetraphenylporphyrin derivatives represent a promising class of high-affinity ligands for voltage-gated potassium (Kv) channels. Herein, we investigated the mode of Kv channel block of one tetraphenylporphyrin derivative, por3, using electrophysiological methods, structure-based mutagenesis, and solid-state NMR spectroscopy. The combined data showed that por3 specifically blocks Kv1.x channels. Unexpectedly, 2 different por3 binding modes lead to Kv1.x channel block exerted through multiple por3 binding sites: first, por3 interacts in a highly cooperative and specific manner with the voltage sensor domain stabilizing closed Kv1 channel state(s). Therefore, stronger depolarization is needed to activate Kv1.x channels in the presence of por3. Second, por3 bind to a single site at the external pore entrance to block the ion conduction pathway of activated Kv1.x channels. This block is voltage-independent. Por3 appears to have equal affinities for voltage-sensor and pore. However, at negative voltage and low por3 concentration, por3 gating modifier properties prevail due to the high cooperativity of binding. By contrast, at positive voltages, when Kv1.x channels are fully activated, por3 pore blocking properties predominate.


Asunto(s)
Porfirinas/química , Porfirinas/farmacología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Animales , Activación del Canal Iónico/efectos de los fármacos , Porosidad , Porfirinas/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Especificidad por Sustrato , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...