Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Evolution ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853722

RESUMEN

The evolution of suppressed recombination between sex chromosomes is widely hypothesized to be driven by sexually antagonistic selection (SA), where tighter linkage between the sex-determining gene(s) and nearby SA loci is favored when it couples male-beneficial alleles to the proto-Y chromosome, and female-beneficial alleles to the proto-X. Although difficult to test empirically, the SA selection hypothesis overshadows several alternatives, including an incomplete but often-repeated "sheltering" hypothesis which suggests that expansion of the sex-linked region (SLR) reduces the homozygous expression of deleterious mutations at selected loci. Here, we use population genetic models to evaluate the consequences of partially recessive deleterious mutational variation for the evolution of otherwise neutral chromosomal inversions expanding the SLR on proto-Y chromosomes. Both autosomal and SLR-expanding inversions face a race against time: lightly-loaded inversions are initially beneficial, but eventually become deleterious as they accumulate new mutations, after which their chances of fixing become negligible. In contrast, initially unloaded inversions eventually become neutral as their deleterious load reaches the same equilibrium as non-inverted haplotypes. Despite the differences in inheritance and indirect selection, SLR-expanding inversions exhibit similar evolutionary dynamics to autosomal inversions over many biologically plausible parameter conditions. Differences emerge when the population average mutation load is quite high; in this case large autosomal inversions that are lucky enough to be mutation-free can rise to intermediate to high frequencies where selection in homozygotes becomes important (Y-linked inversions never appear as homozygous karyotypes); conditions requiring either high mutation rates, highly recessive deleterious mutations, weak selection, or a combination thereof.

2.
Ecol Evol ; 14(3): e11109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469039

RESUMEN

Anthropogenic pressures on nature have been causing population declines for centuries. Intensified persecution of apex predators, like the golden eagle, resulted in population bottlenecks during the 19th and 20th centuries. To study population genetics and demographic history of the golden eagle throughout its distribution, we collected museum samples from previously underrepresented regions, such as Russia and Central Asia. We used 12 microsatellite loci and a fragment of the mitochondrial DNA control region to re-evaluate phylogeography of Eurasian golden eagles and study the impacts of the population bottleneck. Our results revealed a north-south genetic gradient, expressed by the difference between Mediterranean and Holarctic lineages, as well as genetically distinct Northern Europe and Central Asia and Caucasus regions. Furthermore, Northern Europe exhibited the lowest, whereas Central Asia and Caucasus had the highest genetic diversity. Although golden eagles maintained relatively high genetic diversity, we detected genetic signatures of the recent bottleneck, including reduced genetic diversity and a decline in the effective female population size around the year 1975. Our study improves the knowledge of the genetic composition of Eurasian golden eagles and highlights the importance of understanding their historical population dynamics in the face of ongoing and future conservation efforts.

3.
Mov Ecol ; 12(1): 16, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360667

RESUMEN

BACKGROUND: Natal dispersal, the distance between site of birth and site of first breeding, has a fundamental role in population dynamics and species' responses to environmental changes. Population density is considered a key driver of natal dispersal. However, few studies have been able to examine densities at both the natal and the settlement site, which is critical for understanding the role of density in dispersal. Additionally, the role of density on natal dispersal remains poorly understood in long-lived and slowly reproducing species, due to their prolonged dispersal periods and often elusive nature. We studied the natal dispersal of the white-tailed eagle (Haliaeetus albicilla) in response to local breeder densities. We investigated the effects of the number of active territories around the natal site on (a) natal dispersal distance and (b) the difference between natal and settlement site breeder density. We were interested in whether eagles showed tendencies of conspecific attraction (positive density-dependence) or intraspecific competition (negative density-dependence) and how this related to settlement site breeder density. METHODS: We used a combination of long-term visual and genotypic identification to match individuals from their breeding site to their natal nest. We identified natal dispersal events for 355 individuals hatched between 1984 and 2015 in the Baltic Sea coast and Arctic areas of Finland. Of those, 251 were identified by their genotype. RESULTS: Individuals born in high-density areas dispersed shorter distances than those born in low-density areas, but settled at lower density breeding sites in comparison to their natal site. Eagles born in low natal area densities dispersed farther but settled in higher density breeding sites compared to their natal site. CONCLUSIONS: We show that eagles might be attracted by conspecifics (positive density-dependence) to identify high-quality habitats or find mates, but do not settle in the most densely populated areas. This indicates that natal dispersal is affected by an interplay of conspecific attraction and intraspecific competition, which has implications for population dynamics of white-tailed eagles, but also other top predators. Furthermore, our study demonstrates the value of long-term collection of both nestling and (non-invasive) adult DNA samples, and thereafter using genotype matching to identify individuals in long-lived and elusive species.

4.
Mol Ecol ; 31(13): 3566-3583, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35578784

RESUMEN

Recombination strongly impacts sequence evolution by affecting the extent of linkage and the efficiency of selection. Here, we study recombination over the Z chromosome in great reed warblers (Acrocephalus arundinaceus) using pedigree-based linkage mapping. This species has extended Z and W chromosomes ("neo-sex chromosomes") formed by a fusion between a part of chromosome 4A and the ancestral sex chromosomes, which provides a unique opportunity to assess recombination and sequence evolution in sex-linked regions of different ages. We assembled an 87.54 Mbp and 90.19 cM large Z with a small pseudoautosomal region (0.89 Mbp) at one end and the fused Chr4A-part at the other end of the chromosome. A prominent feature in our data was an extreme variation in male recombination rate along Z with high values at both chromosome ends, but an apparent lack of recombination over a substantial central section, covering 78% of the chromosome. The nonrecombining region showed a drastic loss of genetic diversity and accumulation of repeats compared to the recombining parts. Thus, our data emphasize a key role of recombination in affecting local levels of polymorphism. Nonetheless, the evolutionary rate of genes (dN/dS) did not differ between high and low recombining regions, suggesting that the efficiency of selection on protein-coding sequences can be maintained also at very low levels of recombination. Finally, the Chr4A-derived part showed a similar recombination rate as the part of the ancestral Z that did recombine, but its sequence characteristics reflected both its previous autosomal, and current Z-linked, recombination patterns.


Asunto(s)
Passeriformes , Cromosomas Sexuales , Animales , Evolución Molecular , Ligamiento Genético , Masculino , Passeriformes/genética , Polimorfismo Genético , Recombinación Genética , Cromosomas Sexuales/genética
5.
Evolution ; 76(6): 1320-1330, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35482933

RESUMEN

The evolution of suppressed recombination between sex chromosomes is widely hypothesized to be driven by sexually antagonistic selection (SA), where tighter linkage between the sex-determining gene(s) and nearby SA loci is favored when it couples male-beneficial alleles to the proto-Y chromosome, and female-beneficial alleles to the proto-X. Despite limited empirical evidence, the SA selection hypothesis overshadows several alternatives, including an incomplete but often-repeated "sheltering hypothesis" that suggests that expansion of the sex-linked region (SLR) reduces homozygous expression of partially recessive deleterious mutations at selected loci. Here, we use population genetic models to evaluate the consequences of deleterious mutational variation for the evolution of neutral chromosomal inversions expanding the SLR on proto-Y chromosomes. We find that SLR-expanding inversions face a race against time: lightly loaded inversions are initially beneficial, but eventually become deleterious as they accumulate new mutations, and must fix before this window of opportunity closes. The outcome of this race is strongly influenced by inversion size, the mutation rate, and the dominance coefficient of deleterious mutations. Yet, small inversions have elevated fixation probabilities relative to neutral expectations for biologically plausible parameter values. Our results demonstrate that deleterious genetic variation can plausibly drive recombination suppression in small steps and would be most consistent with empirical patterns of small evolutionary strata or gradual recombination arrest.


Asunto(s)
Recombinación Genética , Selección Genética , Inversión Cromosómica , Evolución Molecular , Femenino , Variación Genética , Humanos , Masculino , Cromosomas Sexuales
6.
Mol Biol Evol ; 38(12): 5275-5291, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34542640

RESUMEN

How the avian sex chromosomes first evolved from autosomes remains elusive as 100 million years (My) of divergence and degeneration obscure their evolutionary history. The Sylvioidea group of songbirds is interesting for understanding avian sex chromosome evolution because a chromosome fusion event ∼24 Ma formed "neo-sex chromosomes" consisting of an added (new) and an ancestral (old) part. Here, we report the complete female genome (ZW) of one Sylvioidea species, the great reed warbler (Acrocephalus arundinaceus). Our long-read assembly shows that the added region has been translocated to both Z and W, and whereas the added-Z has retained its gene order the added-W part has been heavily rearranged. Phylogenetic analyses show that recombination between the homologous added-Z and -W regions continued after the fusion event, and that recombination suppression across this region took several million years to be completed. Moreover, recombination suppression was initiated across multiple positions over the added-Z, which is not consistent with a simple linear progression starting from the fusion point. As expected following recombination suppression, the added-W show signs of degeneration including repeat accumulation and gene loss. Finally, we present evidence for nonrandom maintenance of slowly evolving and dosage-sensitive genes on both ancestral- and added-W, a process causing correlated evolution among orthologous genes across broad taxonomic groups, regardless of sex linkage.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Evolución Molecular , Femenino , Passeriformes/genética , Filogenia , Recombinación Genética , Cromosomas Sexuales/genética , Pájaros Cantores/genética
7.
Biol Lett ; 16(4): 20200082, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32315592

RESUMEN

Sex chromosomes in birds have long been considered to be extremely stable. However, this notion has lately been challenged by findings of independent autosome-sex chromosome fusions within songbirds, several of which occur within a single clade, the superfamily Sylvioidea. To understand what ecological and evolutionary processes drive changes in sex chromosome systems, we need complete descriptions of sex chromosome diversity across taxonomic groups. Here, we characterize the sex chromosome systems across Sylvioidea using whole-genome data of species representatives of 10 different families, including two published and eight new genomes. We describe a novel fusion in the family Cisticolidae (represented by Cisticola juncidis) involving a part of chromosome 4. We also confirm the previously identified fusion between chromosome Z and a part of chromosome 4A in all 10 families and show that fusions involving parts of chromosomes 3 and 5 are not found outside the families where they were first discovered (Alaudidae and Panuridae). These findings add to the complexity of the sex chromosome system in Sylvioidea, where four independent autosome-sex chromosome fusions have now been identified.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Evolución Biológica , Genoma , Cromosomas Sexuales/genética , Pájaros Cantores/genética
8.
Proc Biol Sci ; 286(1916): 20192051, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31771477

RESUMEN

Sex chromosomes have evolved from the same autosomes multiple times across vertebrates, suggesting that selection for recombination suppression has acted repeatedly and independently on certain genetic backgrounds. Here, we perform comparative genomics of a bird clade (larks and their sister lineage; Alaudidae and Panuridae) where multiple autosome-sex chromosome fusions appear to have formed expanded sex chromosomes. We detected the largest known avian sex chromosome (195.3 Mbp) and show that it originates from fusions between parts of four avian chromosomes: Z, 3, 4A and 5. Within these four chromosomes, we found evidence of five evolutionary strata where recombination had been suppressed at different time points, and show that stratum age explained the divergence rate of Z-W gametologs. Next, we analysed chromosome content and found that chromosome 3 was significantly enriched for genes with predicted sex-related functions. Finally, we demonstrate extensive homology to sex chromosomes in other vertebrate lineages: chromosomes Z, 3, 4A and 5 have independently evolved into sex chromosomes in fish (Z), turtles (Z, 5), lizards (Z, 4A), mammals (Z, 4A) and frogs (Z, 3, 4A, 5). Our results provide insights into and support for repeated evolution of sex chromosomes in vertebrates.


Asunto(s)
Evolución Biológica , Cromosomas Sexuales , Vertebrados/fisiología , Animales , Femenino , Masculino , Mamíferos , Passeriformes , Filogenia
9.
Genes (Basel) ; 9(8)2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30049999

RESUMEN

Non-recombining sex chromosomes (Y and W) accumulate deleterious mutations and degenerate. This poses a problem for the heterogametic sex (XY males; ZW females) because a single functional gene copy often implies less gene expression and a potential imbalance of crucial expression networks. Mammals counteract this by dosage compensation, resulting in equal sex chromosome expression in males and females, whereas birds show incomplete dosage compensation with significantly lower expression in females (ZW). Here, we study the evolution of Z and W sequence divergence and sex-specific gene expression in the common whitethroat (Sylvia communis), a species within the Sylvioidea clade where a neo-sex chromosome has been formed by a fusion between an autosome and the ancestral sex chromosome. In line with data from other birds, females had lower expression than males at the majority of sex-linked genes. Results from the neo-sex chromosome region showed that W gametologs have diverged functionally to a higher extent than their Z counterparts, and that the female-to-male expression ratio correlated negatively with the degree of functional divergence of these gametologs. We find it most likely that sex-linked genes are being suppressed in females as a response to W chromosome degradation, rather than that these genes experience relaxed selection, and thus diverge more, by having low female expression. Overall, our data of this unique avian neo-sex chromosome system suggest that incomplete dosage compensation evolves, at least partly, through gradual accumulation of deleterious mutations at the W chromosome and declining female gene expression.

10.
Trends Genet ; 34(7): 492-503, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29716744

RESUMEN

It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution.


Asunto(s)
Recombinación Genética/fisiología , Cromosomas Sexuales/fisiología , Animales , Evolución Biológica , Ligamiento Genético/fisiología
11.
Mol Ecol Resour ; 18(4): 867-876, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29658173

RESUMEN

A major goal in evolutionary biology is to understand the genetic basis of adaptive traits. In migratory birds, wing morphology is such a trait. Our previous work on the great reed warbler (Acrocephalus arundinaceus) shows that wing length is highly heritable and under sexually antagonistic selection. Moreover, a quantitative trait locus (QTL) mapping analysis detected a pronounced QTL for wing length on chromosome 2, suggesting that wing morphology is partly controlled by genes with large effects. Here, we re-evaluate the genetic basis of wing length in great reed warblers using a genomewide association study (GWAS) approach based on restriction site-associated DNA sequencing (RADseq) data. We use GWAS models that account for relatedness between individuals and include covariates (sex, age and tarsus length). The resulting association landscape was flat with no peaks on chromosome 2 or elsewhere, which is in line with expectations for polygenic traits. Analysis of the distribution of p-values did not reveal biases, and the inflation factor was low. Effect sizes were however not uniformly distributed on some chromosomes, and the Z chromosome had weaker associations than autosomes. The level of linkage disequilibrium (LD) in the population decayed to background levels within c. 1 kbp. There could be several reasons to why our QTL study and GWAS gave contrasting results including differences in how associations are modelled (cosegregation in pedigree vs. LD associations), how covariates are accounted for in the models, type of marker used (multi- vs. biallelic), difference in power or a combination of these. Our study highlights that the genetic architecture even of highly heritable traits is difficult to characterize in wild populations.


Asunto(s)
Estudios de Asociación Genética , Sitios de Carácter Cuantitativo , Pájaros Cantores/genética , Alas de Animales/anatomía & histología , Adaptación Biológica , Animales , Preferencia en el Apareamiento Animal , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...