Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38666884

RESUMEN

Obesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications. By comparing the genetic, proteomic, and metabolomic profiles of individuals categorized as underweight, normal, overweight, and obese, we aimed to determine which omics layer most accurately reflects the phenotypic changes in an organism that result from obesity. We profiled blood plasma samples by employing three omics methodologies. The untargeted GC×GC-MS metabolomics approach identified 313 metabolites. To augment the metabolomic dataset, we integrated a label-free HPLC-MS/MS proteomics method, leading to the identification of 708 proteins. The genomic layer encompassed the genotyping of 647,250 SNPs. Utilizing omics data, we trained sparse Partial Least Squares models to predict body mass index. Molecular features exhibiting frequently non-zero coefficients were selected as potential biomarkers, and we further explored enriched biological pathways. Proteomics was the most effective in single-omics analyses, with a median absolute error (MAE) of 5.44 ± 0.31 kg/m2, incorporating an average of 24 proteins per model. Metabolomics showed slightly lower performance (MAE = 6.06 ± 0.33 kg/m2), followed by genomics (MAE = 6.20 ± 0.34 kg/m2). As expected, multiomic models demonstrated better accuracy, particularly the combination of proteomics and metabolomics (MAE = 4.77 ± 0.33 kg/m2), while including genomics data did not enhance the results. This manuscript is the first multiomics study of obesity in a gender-balanced cohort of young adults profiled by genomic, proteomic, and metabolomic methods. The comprehensive approach provides novel insights into the molecular mechanisms of obesity, opening avenues for more targeted interventions.

2.
Genes (Basel) ; 14(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003008

RESUMEN

Transcriptomics methods (RNA-Seq, PCR) today are more routine and reproducible than proteomics methods, i.e., both mass spectrometry and immunochemical analysis. For this reason, most scientific studies are limited to assessing the level of mRNA content. At the same time, protein content (and its post-translational status) largely determines the cell's state and behavior. Such a forced extrapolation of conclusions from the transcriptome to the proteome often seems unjustified. The ratios of "transcript-protein" pairs can vary by several orders of magnitude for different genes. As a rule, the correlation coefficient between transcriptome-proteome levels for different tissues does not exceed 0.3-0.5. Several characteristics determine the ratio between the content of mRNA and protein: among them, the rate of movement of the ribosome along the mRNA and the number of free ribosomes in the cell, the availability of tRNA, the secondary structure, and the localization of the transcript. The technical features of the experimental methods also significantly influence the levels of the transcript and protein of the corresponding gene on the outcome of the comparison. Given the above biological features and the performance of experimental and bioinformatic approaches, one may develop various models to predict proteomic profiles based on transcriptomic data. This review is devoted to the ability of RNA sequencing methods for protein abundance prediction.


Asunto(s)
Proteoma , Proteómica , Proteoma/genética , Proteómica/métodos , Perfilación de la Expresión Génica , Transcriptoma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Metabolites ; 13(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37512504

RESUMEN

Recently, the concept of a mass spectrometric blood metabogram was introduced, which allows the analysis of the blood metabolome in terms of the time, cost, and reproducibility of clinical laboratory tests. It was demonstrated that the components of the metabogram are related groups of the blood metabolites associated with humoral regulation; the metabolism of lipids, carbohydrates, and amines; lipid intake into the organism; and liver function, thereby providing clinically relevant information. The purpose of this work was to evaluate the relevance of using the metabogram in a disease. To do this, the metabogram was used to analyze patients with various degrees of metabolic alterations associated with obesity. The study involved 20 healthy individuals, 20 overweight individuals, and 60 individuals with class 1, 2, or 3 obesity. The results showed that the metabogram revealed obesity-associated metabolic alterations, including changes in the blood levels of steroids, amino acids, fatty acids, and phospholipids, which are consistent with the available scientific data to date. Therefore, the metabogram allows testing of metabolically unhealthy overweight or obese patients, providing both a general overview of their metabolic alterations and detailing their individual characteristics. It was concluded that the metabogram is an accurate and clinically applicable test for assessing an individual's metabolic status in disease.

4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768195

RESUMEN

The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches". This new approach is fundamentally unique in terms of its research object (a single biomacromolecule). Most studies are currently performed using postgenomic technologies that allow the properties of several hundreds of millions or even billions of biomacromolecules to be analyzed. This paper discusses the relevance and theoretical, methodological, and practical issues related to the development potential of a single-molecule approach using methods based on molecular detectors.


Asunto(s)
Genómica , Virus , Genómica/métodos , Proteómica/métodos , Biología Computacional , Metabolómica/métodos
5.
Biology (Basel) ; 12(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36829477

RESUMEN

Although modern biology is now in the post-genomic era with vastly increased access to high-quality data, the set of human genes with a known function remains far from complete. This is especially true for hundreds of mitochondria-associated genes, which are under-characterized and lack clear functional annotation. However, with the advent of multi-omics profiling methods coupled with systems biology algorithms, the cellular role of many such genes can be elucidated. Here, we report genes and pathways associated with TOMM34, Translocase of Outer Mitochondrial Membrane, which plays role in the mitochondrial protein import as a part of cytosolic complex together with Hsp70/Hsp90 and is upregulated in various cancers. We identified genes, proteins, and metabolites altered in TOMM34-/- HepG2 cells. To our knowledge, this is the first attempt to study the functional capacity of TOMM34 using a multi-omics strategy. We demonstrate that TOMM34 affects various processes including oxidative phosphorylation, citric acid cycle, metabolism of purine, and several amino acids. Besides the analysis of already known pathways, we utilized de novo network enrichment algorithm to extract novel perturbed subnetworks, thus obtaining evidence that TOMM34 potentially plays role in several other cellular processes, including NOTCH-, MAPK-, and STAT3-signaling. Collectively, our findings provide new insights into TOMM34's cellular functions.

6.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675249

RESUMEN

In metabolomics, many metabolites are measured simultaneously in a single run. Such analytical performance opens up prospects for clinical laboratory diagnostics. In this work, a mass spectrometric metabogram was developed as a simplified and clinically applicable way of measuring the blood plasma metabolome. To develop the metabogram, blood plasma samples from healthy male volunteers (n = 48) of approximately the same age, direct infusion mass spectrometry (DIMS) of the low molecular fraction of samples, and principal component analysis (PCA) of the mass spectra were used. The seven components of the metabogram defined by PCA, which cover ~70% of blood plasma metabolome variability, were characterized using a metabolite set enrichment analysis (MSEA) and clinical test results of participating volunteers. It has been established that the components of the metabogram are functionally related groups of the blood metabolome associated with regulation, lipid-carbohydrate, and lipid-amine blood components, eicosanoids, lipid intake into the organism, and liver function thereby providing a lot of clinically relevant information. Therefore, metabogram provides the possibility to apply the metabolomics performance in the clinic. The features of the metabogram are also discussed in comparison with the thin-layer chromatography and with the analysis of blood metabolome by liquid chromatography combined with mass spectrometry.


Asunto(s)
Metaboloma , Metabolómica , Masculino , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Cromatografía Liquida/métodos , Lípidos
7.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614211

RESUMEN

A meta-analysis of the results of targeted quantitative screening of human blood plasma was performed to generate a reference standard kit that can be used for health analytics. The panel included 53 of the 296 proteins that form a "stable" part of the proteome of a healthy individual; these proteins were found in at least 70% of samples and were characterized by an interindividual coefficient of variation <40%. The concentration range of the selected proteins was 10−10−10−3 M and enrichment analysis revealed their association with rare familial diseases. The concentration of ceruloplasmin was reduced by approximately three orders of magnitude in patients with neurological disorders compared to healthy volunteers, and those of gelsolin isoform 1 and complement factor H were abruptly reduced in patients with lung adenocarcinoma. Absolute quantitative data of the individual proteome of a healthy and diseased individual can be used as the basis for personalized medicine and health monitoring. Storage over time allows us to identify individual biomarkers in the molecular landscape and prevent pathological conditions.


Asunto(s)
Proteínas Sanguíneas , Plasma , Proteoma , Humanos , Proteínas Sanguíneas/metabolismo , Ceruloplasmina/metabolismo , Espectrometría de Masas/métodos , Plasma/metabolismo , Proteómica
8.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203578

RESUMEN

This work demonstrates the use of a modified mica to concentrate proteins, which is required for proteomic profiling of blood plasma by mass spectrometry (MS). The surface of mica substrates, which are routinely used in atomic force microscopy (AFM), was modified with a photocrosslinker to allow "irreversible" binding of proteins via covalent bond formation. This modified substrate was called the AFM chip. This study aimed to determine the role of the surface and crosslinker in the efficient concentration of various types of proteins in plasma over a wide concentration range. The substrate surface was modified with a 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) photocrosslinker, activated by UV irradiation. AFM chips were incubated with plasma samples from a healthy volunteer at various dilution ratios (102X, 104X, and 106X). Control experiments were performed without UV irradiation to evaluate the contribution of physical protein adsorption to the concentration efficiency. AFM imaging confirmed the presence of protein layers on the chip surface after incubation with the samples. MS analysis of different samples indicated that the proteomic profile of the AFM-visualized layers contained common and unique proteins. In the working series of experiments, 228 proteins were identified on the chip surface for all samples, and 21 proteins were not identified in the control series. In the control series, a total of 220 proteins were identified on the chip surface, seven of which were not found in the working series. In plasma samples at various dilution ratios, a total of 146 proteins were identified without the concentration step, while 17 proteins were not detected in the series using AFM chips. The introduction of a concentration step using AFM chips allowed us to identify more proteins than in plasma samples without this step. We found that AFM chips with a modified surface facilitate the efficient concentration of proteins owing to the adsorption factor and the formation of covalent bonds between the proteins and the chip surface. The results of our study can be applied in the development of highly sensitive analytical systems for determining the complete composition of the plasma proteome.


Asunto(s)
Proteínas Sanguíneas , Proteómica , Humanos , Silicatos de Aluminio , Espectrometría de Masas
9.
Front Mol Biosci ; 9: 944639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545510

RESUMEN

It has been shown that the best coverage of the HepG2 cell line transcriptome encoded by genes of a single chromosome, chromosome 18, is achieved by a combination of two sequencing platforms, Illumina RNA-Seq and Oxford Nanopore Technologies (ONT), using cut-off levels of FPKM > 0 and TPM > 0, respectively. In this study, we investigated the extent to which the combination of these transcriptomic analysis methods makes it possible to achieve a high coverage of the transcriptome encoded by the genes of other human chromosomes. A comparative analysis of transcriptome coverage for various types of biological material was carried out, and the HepG2 cell line transcriptome was compared with the transcriptome of liver tissue cells. In addition, the contribution of variability in the coverage of expressed genes in human transcriptomes to the creation of a draft human transcriptome was evaluated. For human liver tissues, ONT makes an extremely insignificant contribution to the overall coverage of the transcriptome. Thus, to ensure maximum coverage of the liver tissue transcriptome, it is sufficient to apply only one technology: Illumina RNA-Seq (FPKM > 0).

10.
Cells ; 11(22)2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36428976

RESUMEN

Both biological and technical variations can discredit the reliability of obtained data in omics studies. In this technical note, we investigated the effect of prolonged cultivation of the HepG2 hepatoma cell line on its metabolomic profile. Using the GC × GC-MS approach, we determined the degree of metabolic variability across HepG2 cells cultured in uniform conditions for 0, 5, 10, 15, and 20 days. Post-processing of obtained data revealed substantial changes in relative abundances of 110 metabolites among HepG2 samples under investigation. Our findings have implications for interpreting metabolomic results obtained from immortal cells, especially in longitudinal studies. There are still plenty of unanswered questions regarding metabolomics variability and many potential areas for future targeted and panoramic research. However, we suggest that the metabolome of cell lines is unstable and may undergo significant transformation over time, even if the culture conditions remain the same. Considering metabolomics variability on a relatively long-term basis, careful experimentation with particular attention to control samples is required to ensure reproducibility and relevance of the research results when testing both fundamentally and practically significant hypotheses.


Asunto(s)
Metaboloma , Metabolómica , Humanos , Reproducibilidad de los Resultados , Células Hep G2 , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos
11.
J Pers Med ; 12(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35330478

RESUMEN

Within the Human Proteome Project initiative framework for creating functional annotations of uPE1 proteins, the neXt-CP50 Challenge was launched in 2018. In analogy with the missing-protein challenge, each command deciphers the functional features of the proteins in the chromosome-centric mode. However, the neXt-CP50 Challenge is more complicated than the missing-protein challenge: the approaches and methods for solving the problem are clear, but neither the concept of protein function nor specific experimental and/or bioinformatics protocols have been standardized to address it. We proposed using a retrospective analysis of the key HPP repository, the neXtProt database, to identify the most frequently used experimental and bioinformatic methods for analyzing protein functions, and the dynamics of accumulation of functional annotations. It has been shown that the dynamics of the increase in the number of proteins with known functions are greater than the progress made in the experimental confirmation of the existence of questionable proteins in the framework of the missing-protein challenge. At the same time, the functional annotation is based on the guilty-by-association postulate, according to which, based on large-scale experiments on API-MS and Y2H, proteins with unknown functions are most likely mapped through "handshakes" to biochemical processes.

12.
Data Brief ; 42: 108055, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35345844

RESUMEN

The data was acquired from 3 normal human liver tissues by LC-MS methods. The tissue liver samples from male subjects post mortem were obtained from ILSBio LLC (https://bioivt.com/). Liver tissue was frozen in liquid nitrogen, transported and shipped on dry ice. The proteins were extracted and purified followed up by trypsin hydrolysis. The peptide mixture was aliquoted and analyzed by different LC-MS approaches: one-dimensional shotgun LC-MS, two-dimensional LC-MS, two-dimensional SRM SIS (Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards). The Shotgun assay resulted in a qualitative in-depth human liver proteome, and a semi-quantitative iBAQ (intensity-based absolute quantification) value was calculated to show the relative protein content of the sample. Absolute quantitative concentrations of proteins encoded by human chromosome 18 using SRM SIS were obtained.

13.
Scientometrics ; 127(4): 1953-1967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221395

RESUMEN

The paper describes a scheme for the comparative analysis of the sets of Pubmed publications. The proposed analysis is based on the comparison of the frequencies of occurrence of keywords-MeSH terms. The purpose of the analysis is to identify MeSH terms that characterize research areas specific to each group of articles, as well as to identify trends-topics on which the number of published works has changed significantly in recent years. The proposed approach was tested by comparing a set of medical publications and a group of articles in the field of personalized medicine. We analyzed about 700 thousand abstracts published in the period 2009-2021 and indexed them with MeSH terms. Topics with increasing research interest have been identified both in the field of medicine in general and specific to personalized medicine. Retrospective analysis of the keywords frequency of occurrence changes has shown the shift of the scientific priorities in this area over the past 10 years. The revealed patterns can be used to predict the relevance and significance of the scientific work direction in the horizon of 3-5 years. The proposed analysis can be scaled in the future for a larger number of groups of publications, as well as adjusted by introducing filters at the stage of sampling (scientific centers, journals, availability of full texts, etc.) or selecting a list of keywords (frequency threshold, use of qualifiers, category of generalizations). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11192-022-04292-y.

14.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209175

RESUMEN

The three-dimensional structure of monomers and homodimers of CYP102A1/WT (wild-type) proteins and their A83F and A83I mutant forms was predicted using the AlphaFold2 (AF2) and AlphaFold Multimer (AFMultimer) programs, which were compared with the rate constants of hydroxylation reactions of these enzyme forms to determine the efficiency of intra- and interprotein electron transport in the CYP102A1 hydroxylase system. The electron transfer rate constants (ket), which determine the rate of indole hydroxylation by the CYP102A1 system, were calculated based on the distances (R) between donor-acceptor prosthetic groups (PG) FAD→FMN→HEME of these proteins using factor ß, which describes an exponential decay from R the speed of electron transport (ET) according to the tunnelling mechanism. It was shown that the structure of monomers in the homodimer, calculated using the AlpfaFold Multimer program, is in good agreement with the experimental structures of globular domains (HEME-, FMN-, and FAD-domains) in CYP102A1/WT obtained by X-ray structural analysis, and the structure of isolated monomers predicted in AF2 does not coincide with the structure of monomers in the homodimer, although a high level of similarity in individual domains remains. The structures of monomers and homodimers of A83F and A83I mutants were also calculated, and their structures were compared with the wild-type protein. Significant differences in the structure of all isolated monomers with respect to the structures of monomers in homodimers were also found for them, and at the same time, insignificant differences were revealed for all homodimers. Comparative analysis for CYP102A1/WT between the calculated intra- and interprotein distances FAD→FMN→HEME and the rate constants of hydroxylation in these proteins showed that the distance between prosthetic groups both in the monomer and in the dimer allows the implementation of electron transfer between PGs, which is consistent with experimental literature data about kcat. For the mutant form of monomer A83I, an increase in the distance between PGs was obtained, which can restrict electron transportation compared to WT; however, for the dimer of this protein, a decrease in the distance between PGs was observed compared to the WT form, which can lead to an increase in the electron transfer rate constant and, accordingly, kcat. For the monomer and homodimer of the A83F mutant, the calculations showed an increase in the distance between the PGs compared to the WT form, which should have led to a decrease in the electron transfer rate, but at the same time, for the homodimer, the approach of the aromatic group F262 with heme can speed up transportation for this form and, accordingly, the rate of hydroxylation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Transporte de Electrón , Modelos Moleculares , NADPH-Ferrihemoproteína Reductasa/química , NADPH-Ferrihemoproteína Reductasa/metabolismo , Conformación Proteica , Multimerización de Proteína , Proteínas Bacterianas/genética , Sistema Enzimático del Citocromo P-450/genética , NADPH-Ferrihemoproteína Reductasa/genética , Mutación Puntual , Unión Proteica , Relación Estructura-Actividad
15.
Biology (Basel) ; 10(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34827124

RESUMEN

Long-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome data to unravel activated biological processes responsible for disease progression and response to therapies. This trend is of particular interest for precision medicine which aims at single-patient analysis. Here we evaluated whether gene abundances measured by MinION direct RNA sequencing are suited to produce robust estimates of pathway activation for single sample scoring methods. We performed multiple RNA-seq analyses for a single sample that originated from the HepG2 cell line, namely five ONT replicates, and three replicates using Illumina NovaSeq. Two pathway scoring methods were employed-ssGSEA and singscore. We estimated the ONT performance in terms of detected protein-coding genes and average pairwise correlation between pathway activation scores using an exhaustive computational scheme for all combinations of replicates. In brief, we found that at least two ONT replicates are required to obtain reproducible pathway scores for both algorithms. We hope that our findings may be of interest to researchers planning their ONT direct RNA-seq experiments.

16.
J Pers Med ; 11(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494491

RESUMEN

Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of "cheap calories" are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy.

17.
J Proteome Res ; 19(12): 4901-4906, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33202127

RESUMEN

One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples. This approach is extremely important in the context of the C-HPP and the neXt-MP50 Challenge, which can be solved by increasing the sensitivity and the coverage of the proteome encoded by a particular human chromosome. In this study, we used 2D fractionation for in-depth analysis of the proteins encoded by human chromosome 18 (Chr 18) in the HepG2 cell line. Use of 2D fractionation increased the sensitivity of the SRM SIS method by 1.3-fold (68 and 88 proteins were identified by 1D fractionation and 2D fractionation, respectively) and the shotgun MS/MS method by 2.5-fold (21 and 53 proteins encoded by Chr 18 were detected by 1D fractionation and 2D fractionation, respectively). The results of all experiments indicate that 111 proteins encoded by human Chr 18 have been identified; this list includes 42% of the Chr 18 protein-coding genes and 67% of the Chr 18 transcriptome species (Illumina RNaseq) in the HepG2 cell line obtained using a single sample. Corresponding mRNAs were not registered for 13 of the detected proteins. The combination of 2D fractionation technology with SRM SIS and shotgun mass spectrometric analysis did not achieve full coverage, i.e., identification of at least one protein product for each of the 265 protein-coding genes of the selected chromosome. To further increase the sensitivity of the method, we plan to use 5-10 crude synthetic peptides for each protein to identify the proteins and select one of the peptides based on the obtained mass spectra for the synthesis of an isotopically labeled standard for subsequent quantitative analysis. Data are available via ProteomeXchange with the identifier PXD019263.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromosomas Humanos , Humanos , Proteoma/genética , Transcriptoma
18.
Sci Rep ; 10(1): 15884, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985516

RESUMEN

It is a common fact, that the content of sex hormones in humans and animals varies in different age periods. The functional state of the immune system also changes with age. However, sex differences studies of inflammatory and immune responses during puberty prevail in literature. Investigation of immune responses to LPS peculiarities in prepubertal females and males may contribute to the development of more effective immunotherapy and minimize side effects of children vaccination. Therefore, the aim of this work was to investigate the LPS-induced SIRS sex differences in prepubertal Wistar rats. Despite the absence of sex differences in estradiol and testosterone levels, LPS-induced inflammatory changes in liver and lungs are more pronounced among males. Males demonstrate the increasing neopterin, corticosterone levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Not less important is that in females, demonstrating less morphological changes in liver and lungs, endotoxin level is tenfold higher, and corticosterone level decreases. Thus, endotoxin cannot be used as a marker of the severity of multiple organ failure in prepubertal period. The LPS-induced immune reactions in females and males are similar and are characterized by immunosuppression. Both females and males have decreased production of cytokines (IL-2, IL-4, TNF-α, TGF-ß) and the absolute number of CD3 + and CD3 + CD8 + lymphocytes in blood. The acute atrophy of thymus and apoptosis of thymic cells are revealed in animals of both sexes. However, the number of CD3 + CD4 + T-helpers and CD4 + CD25 + Foxp3 + T-cells decreases only in females with SIRS, and in males there was a decrease of CD45R + B-cells. The least expressed sex differences in immune responses in the prepubertal period can be determined by the low levels of sex steroids and the absence of their immunomodulatory effect. Further studies require the identification of mechanisms, determining the sex differences in the inflammatory and immune responses in prepubertal animals.


Asunto(s)
Inmunidad/fisiología , Hígado/inmunología , Pulmón/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Animales , Corticosterona/sangre , Endotoxinas/sangre , Estradiol/sangre , Femenino , Hígado/patología , Pulmón/patología , Masculino , Ratas , Ratas Wistar , Factores Sexuales , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/patología , Testosterona/sangre
19.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952343

RESUMEN

Scientists currently use only a small portion of the information contained in the blood metabolome. The identification of metabolites is a huge challenge because only highly abundant and well-separated compounds can be easily identified in complex samples. However, new approaches that enhance the identification of compounds have emerged; among them, the identification of compounds based on their involvement in a particular biological context is a recent development. In this work, this approach was first applied to identify metabolites in complex samples and, together with metabolite set enrichment analysis, was used for the evaluation of blood plasma from obese patients. The proposed approach was found to provide a statistically sound overview of the biochemical pathways, thus presenting additional information on obesity. Obesity progression was demonstrated to be accompanied by marked alterations in steroidogenesis, androstenedione metabolism, and androgen and estrogen metabolism. The findings of this study suggest that the workflow used for blood analysis is sufficient to demonstrate obesity at the biochemical pathway level as well as to monitor the response to treatment. This workflow is also expected to be suitable for studying other metabolic diseases.


Asunto(s)
Metabolómica/métodos , Obesidad/sangre , Obesidad/metabolismo , Espectrometría de Masas en Tándem/métodos , Adulto , Índice de Masa Corporal , Femenino , Humanos , Masculino , Metaboloma , Reproducibilidad de los Resultados , Flujo de Trabajo , Adulto Joven
20.
J Proteome Res ; 18(12): 4273-4276, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31621326

RESUMEN

The Chromosome-centric Human Proteome Project aims at characterizing the expression of proteins encoded in each chromosome at the tissue, cell, and subcellular levels. The proteomic profiling of a particular tissue or cell line commonly results in a substantial portion of proteins that are not observed (the "missing" proteome). The concurrent transcriptome profiling of the analyzed tissue/cells samples may help define the set of untranscribed genes in a given type of tissue or cell, thus narrowing the size of the "missing" proteome and allowing us to focus on defining the reasons behind undetected proteins, namely, whether they are technical (insufficient sensitivity of protein detection) or biological (correspond to not-translated transcripts). We believe that the quantitative polymerase chain reaction (qPCR) can provide an efficient approach to studying low-abundant transcripts related to undetected proteins due to its high sensitivity and the possibility of ensuring the specificity of detection via the simple Sanger sequencing of PCR products. Here we illustrated the feasibility of such an approach on a set of low-abundant transcripts. Although inapplicable to the analysis of whole transcriptome, qPCR can successfully be utilized to profile a limited cohort of transcripts encoded on a particular chromosome, as we previously demonstrated for human chromosome 18.


Asunto(s)
Proteoma/genética , Proteómica/métodos , Cromosomas Humanos , Cromosomas Humanos Par 18 , Perfilación de la Expresión Génica , Células Hep G2 , Humanos , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...