Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 19(Suppl 3): 0, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29504899

RESUMEN

BACKGROUND: The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS: A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS: According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.


Asunto(s)
Marcadores Genéticos/genética , Genómica , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Reproducción/genética , Proteína de Unión a TATA-Box/metabolismo , Línea Celular , Femenino , Humanos , Internet , Unión Proteica
2.
BMC Genomics ; 17(Suppl 14): 995, 2016 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28105927

RESUMEN

BACKGROUND: Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. RESULTS: Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence with cardiovascular complications in adulthood). CONCLUSIONS: After validation of these candidate markers by clinical protocols, these SNPs may become useful for physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing aggressiveness-related complications).


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteína de Unión a TATA-Box/metabolismo , Alelos , Progresión de la Enfermedad , Femenino , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/complicaciones , Enfermedades Genéticas Congénitas/patología , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Obesidad/complicaciones , Obesidad/genética , Fenotipo , Pronóstico , Unión Proteica , Resultado del Tratamiento
3.
BMC Genomics ; 16 Suppl 13: S5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26694100

RESUMEN

BACKGROUND: Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. RESULTS: We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the statistical significance (α < 0.00025) of the differences in TBP affinity values between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation rate constants, ka and kd, of the TBP-DNA complex for these SNPs. CONCLUSIONS: Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong rationale and may advance postgenomic predictive preventive personalized medicine.


Asunto(s)
Obesidad/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Marcadores Genéticos , Humanos , Obesidad/metabolismo
4.
J Bioinform Comput Biol ; 13(1): 1540009, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25666655

RESUMEN

Auxin is one of the main regulators of growth and development in plants. Prediction of auxin response based on gene sequence is of high importance. We found the TGTCNC consensus of 111 known natural and artificially mutated auxin response elements (AuxREs) with measured auxin-caused relative increase in genes' transcription levels, so-called either "a response to auxin" or "an auxin response." This consensus was identical to the most cited AuxRE motif. Also, we found several DNA sequence features that correlate with auxin-caused increase in genes' transcription levels, namely: number of matches with TGTCNC, homology score based on nucleotide frequencies at the consensus positions, abundances of five trinucleotides and five B-helical DNA features around these known AuxREs. We combined these correlations using a four-step empirical model of auxin response based on a gene's sequence with four steps, namely: (1) search for AuxREs with no auxin; (2) stop at the found AuxRE; (3) repression of the basal transcription of the gene having this AuxRE; and (4) manifold increase of this gene's transcription in response to auxin. Independently measured increases in transcription levels in response to auxin for 70 Arabidopsis genes were found to significantly correlate with predictions of this equation (r = 0.44, p < 0.001) as well as with TATA-binding protein (TBP)'s affinity to promoters of these genes and with nucleosome packing of these promoters (both, p < 0.025). Finally, we improved our equation for prediction of a gene's transcription increase in response to auxin by taking into account TBP-binding and nucleosome packing (r = 0.53, p < 10(-6)). Fisher's F-test validated the significant impact of both TBP/promoter-affinity and promoter nucleosome on auxin response in addition to those of AuxRE, F = 4.07, p < 0.025. It means that both TATA-box and nucleosome should be taken into account to recognize transcription factor binding sites upon DNA sequences: in the case of the TATA-less nucleosome-rich promoters, recognition scores must be higher than in the case of the TATA-containing nucleosome-free promoters at the same transcription activity.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN de Plantas/metabolismo , Bases de Datos Genéticas , Mutación , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Elementos de Respuesta , TATA Box , Transcripción Genética , Regulación hacia Arriba
5.
Front Genet ; 4: 122, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23847649

RESUMEN

Mature microRNAs (miRNAs) are small endogenous non-coding RNAs 18-25 nt in length. They program the RNA Induced Silencing Complex (RISC) to make it inhibit either messenger RNAs or promoter DNAs. We have found that the mean abundance of miRNAs in Arabidopsis is correlated with the abundance of DRYD tetranucleotides near the 3'-end and the abundance of WRHB tetranucleotides in the center of the miRNA sequence. Based on this correlation, we have estimated miRNA abundances in seven organs of this plant, namely: inflorescences, stems, siliques, seedlings, roots, cauline, and rosette leaves. We have also found that the mean affinity of miRNAs for two proteins in the Argonaute family (Ago2 and Ago3) in man is correlated with the abundance of YRHB tetranucleotides near the 3'-end and that the preference of miRNAs for Ago2 is correlated with the abundance of RHHK tetranucleotides in the center of the miRNA sequence. This allowed us to obtain statistically significant estimates of miRNA abundances in human embryonic kidney cells, HEK293T. These findings in relation to two taxonomically distant entities (man and Arabidopsis) fit one another like pieces of a jigsaw puzzle, which allowed us to heuristically generalize them and state that the miRNA abundance in the human brain may be determined by the abundance of YRHB and RHHK tetranucleotides in these miRNAs.

6.
J Bioinform Comput Biol ; 11(1): 1340011, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23427993

RESUMEN

Plant hormone auxin is a key regulator of growth and development. Auxin affects gene expression through ARF transcription factors, which bind specifically auxin responsive elements (AuxREs). Auxin responsive genes usually have more than one AuxRE, for example, a widely used auxin sensor DR5 contains seven AuxREs. Auxin responsive regions of several plant genes have been studied using sets of transgenic constructions in which the activity of one or several AuxREs were abolished. Here we present the method for analysis of the datasets on promoter activity assays having promoter sequences, namely, number and sequences of AuxREs, altogether with their measured auxin induction level. The method for a reverse problem solution considers two extreme models of AuxRE cooperation. Additive model describes auxin induction level of a gene as a sum of the individual AuxREs impacts. Multiplicative model considers pure cooperation between the AuxREs, where the combined effect is the multiplication of the individual AuxRE impacts. The reverse problem solution allows estimating the impact of an individual AuxRE into the induction level and the model for their cooperation. For promoters of three genes belonging to different plant species we showed that the multiplicative model fits better than additive. The reverse problem solution also suggests repressive state of auxin responsive promoters before auxin induction. The developed method provides possibility to investigate AuxRE structure-activity relationship and may be used as the basis for a novel approach for AuxRE recognition.


Asunto(s)
ADN de Plantas/genética , Genes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Modelos Genéticos , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Elementos de Respuesta/genética , Secuencia de Bases , Simulación por Computador , Datos de Secuencia Molecular
7.
Nucleic Acids Res ; 39(11): 4836-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21343179

RESUMEN

We have used a stepwise increase in ligand complexity approach to estimate the relative contributions of the nucleotide units of DNA containing 7,8-dihydro-8-oxoguanine (oxoG) to its total affinity for human 8-oxoguanine DNA glycosylase (OGG1) and construct thermodynamic models of the enzyme interaction with cognate and non-cognate DNA. Non-specific OGG1 interactions with 10-13 nt pairs within its DNA-binding cleft provides approximately 5 orders of magnitude of its affinity for DNA (ΔG° approximately -6.7 kcal/mol). The relative contribution of the oxoG unit of DNA (ΔG° approximately -3.3 kcal/mol) together with other specific interactions (ΔG° approximately -0.7 kcal/mol) provide approximately 3 orders of magnitude of the affinity. Formation of the Michaelis complex of OGG1 with the cognate DNA cannot account for the major part of the enzyme specificity, which lies in the k(cat) term instead; the rate increases by 6-7 orders of magnitude for cognate DNA as compared with non-cognate one. The k(cat) values for substrates of different sequences correlate with the DNA twist, while the K(M) values correlate with ΔG° of the DNA fragments surrounding the lesion (position from -6 to +6). The functions for predicting the K(M) and k(cat) values for different sequences containing oxoG were found.


Asunto(s)
ADN Glicosilasas/química , ADN/química , Guanina/análogos & derivados , Termodinámica , ADN/metabolismo , ADN Glicosilasas/metabolismo , Reparación del ADN , Guanina/química , Humanos , Cinética , Ligandos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Unión Proteica
8.
J Bioinform Comput Biol ; 8(3): 607-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20556865

RESUMEN

Evolutionary trends have been examined in 146 HIV-1 forms (2662 copies, 2311 isolates) polymorphic for the TATA box using the "DNA sequence-->affinity for TBP" regression (TBP is the TATA binding protein). As a result, a statistically significant excess of low-affinity TATA box HIV-1 variants corresponding to a low level of both basal and TAT-dependent expression and, consequently, slow replication of HIV-1 have been detected. A detailed analysis revealed that the excess of slowly replicating HIV-1 is associated with the subtype E-associated TATA box core sequence "CATAAAA". Principal Component Analysis performed on 2662 HIV-1 TATA box copies in 70 countries revealed the presence of two principal components, PC1 (75.7% of the variance) and PC2 (23.3% of the variance). They indicate that each of these countries is specifically associated with one of the following trends in HIV-1 evolution: neutral drift around the normal TATA box; neutral drift around the slowly replicating TATA box core sequence (phylogenetic inertia); an adaptive increase in the frequency of the slowly replicating form.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/epidemiología , Síndrome de Inmunodeficiencia Adquirida/virología , Análisis Mutacional de ADN/métodos , Brotes de Enfermedades/estadística & datos numéricos , VIH-1/genética , Polimorfismo de Nucleótido Simple/genética , TATA Box/genética , Humanos , Internacionalidad , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...