Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(29): 19268-19282, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38981060

RESUMEN

Catalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive. We showcase the importance of this electronic parameter by generating spin polarization through a defect engineering approach based on the introduction of Co vacancies on the surface of CoSe nanosheets. We show vacancies change the electron spin state distribution, increasing the number of unpaired electrons with aligned spins. This local electronic rearrangement enhances the polysulfide adsorption, reducing the activation energy of the Li-S redox reactions. As a result, more uniform nucleation and growth of Li2S and an accelerated liquid-solid conversion in LSB cathodes are obtained. These translate into LSB cathodes exhibiting capacities up to 1089 mA h g-1 at 1 C with 0.017% average capacity loss after 1500 cycles, and up to 5.2 mA h cm-2, with 0.16% decay per cycle after 200 cycles in high sulfur loading cells.

2.
ACS Appl Energy Mater ; 6(13): 7250-7257, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37448980

RESUMEN

Ca- and Mg-based batteries represent a more sustainable alternative to Li-ion batteries. However, multivalent cation technologies suffer from poor cation mass transport. In addition, the development of positive electrodes enabling reversible charge storage currently represents one of the major challenges. Organic positive electrodes, in addition to being the most sustainable and potentially low-cost candidates, compared with their inorganic counterparts, currently present the best electrochemical performances in Ca and Mg cells. Unfortunately, organic positive electrodes suffer from relatively low capacity retention upon cycling, the origin of which is not yet fully understood. Here, 1,4,5,8-naphthalenetetracarboxylic dianhydride-derived polyimide was tested in Li, Na, Mg, and Ca cells for the sake of comparison in terms of redox potential, gravimetric capacities, capacity retention, and rate capability. The redox mechanisms were also investigated by means of operando IR experiments, and a parameter affecting most figures of merit has been identified: the presence of contact ion-pairs in the electrolyte.

3.
J Mater Chem A Mater ; 11(27): 14738-14747, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37441279

RESUMEN

Ca metal anode rechargeable batteries are seen as a sustainable high-energy density and high-voltage alternative to the current Li-ion battery technology due to the low redox potential of Ca metal and abundance of Ca. Electrolytes are key enablers on the path towards next-generation battery systems. Within this work, we synthesize a new calcium tetrakis(hexafluoroisopropyloxy) aluminate salt, Ca[Al(hfip)4]2, and benchmark it versus the state-of-the-art boron analogue Ca[B(hfip)4]2. The newly developed aluminate-based electrolyte exhibits improved performance in terms of conductivity, Ca plating/stripping efficiency, and oxidative stability as well as Ca battery cell performance. A marked improvement of 0.5 V higher oxidative stability can pave the path towards high-voltage Ca batteries. A critical issue of solvent quality during salt synthesis is identified as well as solvent decomposition at the Ca metal/electrolyte interface, which leads to passivation of the Ca metal anode. However, the new aluminate salt with preferable electrochemical properties over the existing boron analogue opens up a new area for future Ca battery research based on aluminium compounds.

4.
Chem Sci ; 14(7): 1641-1665, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36819848

RESUMEN

Synchrotron radiation based techniques are powerful tools for battery research and allow probing a wide range of length scales, with different depth sensitivities and spatial/temporal resolutions. Operando experiments enable characterization during functioning of the cell and are thus a precious tool to elucidate the reaction mechanisms taking place. In this perspective, the current state of the art for the most relevant techniques (scattering, spectroscopy, and imaging) is discussed together with the bottlenecks to address, either specific for application in the battery field or more generic. The former includes the improvement of cell designs, multi-modal characterization and development of protocols for automated or at least semi-automated data analysis to quickly process the huge amount of data resulting from operando experiments. Given the recent evolution in these areas, accelerated progress is expected in the years to come, which should in turn foster battery performance improvements.

5.
IUCrdata ; 8(Pt 1): x230062, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36794047

RESUMEN

The crystal structure of the co-crystal of aqua-tri-fluorido-boron with two ethyl-ene carbonate (systematic name: 1,3-dioxolan-2-one) mol-ecules, BF3H2O·2OC(OCH2)2, was determined by low-temperature single-crystal X-ray diffraction. The co-crystal crystallizes in the ortho-rhom-bic space group P212121 with four formula units per unit cell. The asymmetric unit consists of an aqua-tri-fluorido-boron mol-ecule and two ethyl-ene carbonate mol-ecules, connected by O-H⋯O=C hydrogen bonds. This crystal structure is an inter-esting example of a superacidic BF3H2O species co-crystallized with an organic carbonate.

6.
Phys Chem Chem Phys ; 22(39): 22768-22777, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33021285

RESUMEN

The currently emerging sodium-ion battery technology is in need of an optimized standard organic solvent electrolyte based on solid and directly comparable data. With this aim we have made a systematic study of "simple" electrolyte systems consisting of two sodium salts (NaTFSI and NaPF6) dissolved in three different alkyl carbonate solvents (EC, PC, DMC) within a wide range of salt concentrations and investigated: (i) their more macroscopic physico-chemical properties such as ionic conductivity, viscosity, thermal stability, and (ii) the molecular level properties such as ion-pairing and solvation. From this all electrolytes were found to have useful thermal operational windows and electrochemical stability windows, allowing for large scale energy storage technologies focused on load levelling or (to a less extent) electric vehicles, and ionic conductivities on par with analogous lithium-ion battery electrolytes, giving promise to also be power performant. Furthermore, at the molecular level the NaPF6-based electrolytes are more dissociated than the NaTFSI-based ones because of the higher ionic association strength of TFSI compared to PF6- while two different conformers of DMC participate in the Na+ first solvation shells - a Na+ affected conformational equilibrium and induced polarity of DMC. The non-negligible presence of DMC in the Na+ first solvation shells increases as a function of salt concentration. Overall, these results should both have a general impact on the design of more performant Na-conducting electrolytes and provide useful insight on the very details of the importance of DMC conformers in any cation solvation studies.

7.
Chem Rev ; 120(14): 6331-6357, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31661250

RESUMEN

This Review flows from past attempts to develop a (rechargeable) battery technology based on Ca via crucial breakthroughs to arrive at a comprehensive discussion of the current challenges at hand. The realization of a rechargeable Ca battery technology primarily requires identification and development of suitable electrodes and electrolytes, which is why we here cover the progress starting from the fundamental electrode/electrolyte requirements, concepts, materials, and compositions employed and finally a critical analysis of the state-of-the-art, allowing us to conclude with the particular roadblocks still existing. As for crucial breakthroughs, reversible plating and stripping of calcium at the metal-anode interface was achieved only recently and for very specific electrolyte formulations. Therefore, while much of the current research aims at finding suitable cathodes to achieve proof-of-concept for a full Ca battery, the spectrum of electrolytes researched is also expanded. Compatibility of cell components is essential, and to ensure this, proper characterization is needed, which requires design of a multitude of reliable experimental setups and sometimes methodology development beyond that of other next generation battery technologies. Finally, we conclude with recommendations for future strategies to make best use of the current advances in materials science combined with computational design, electrochemistry, and battery engineering, all to propel the Ca battery technology to reality and ultimately reach its full potential for energy storage.

8.
Chem Mater ; 31(21): 8613-8628, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31736535

RESUMEN

While less mature than the Li-ion battery, technologies based on Na, K, Mg, and Ca are attracting more and more attention from the battery community. New material (cathode, anode, or electrolyte) testing for these post-Li systems commonly involves the use of an electrochemical setup called a half-cell in which metal counter and reference electrodes are used. Here we first describe the different issues that become critical when moving away from Li with respect to the cell hardware (cell design, current collector, separator, insulator) and the nature of the counter and reference electrodes. Workarounds are given, and a versatile setup is proposed to run reliable electrochemical tests for post-Li battery materials in general, in a broad range of electrolyte compositions.

9.
Philos Trans A Math Phys Eng Sci ; 377(2152): 20180297, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31280715

RESUMEN

Current societal challenges in terms of energy storage have prompted an intensification in the research aiming at unravelling new high energy density battery technologies. These would have the potential of having disruptive effects in the world transition towards a less carbon-dependent energy economy through transport, both by electrification and renewable energy integration. Aside from controversial debates on lithium supply, the development of new sustainable battery chemistries based on abundant elements is appealing, especially for large-scale stationary applications. Interesting alternatives are to use sodium, magnesium or calcium instead of lithium. While for the Na-ion case, fast progresses are expected as a result of chemical similarities with lithium and the cumulated Li-ion battery know-how over the years, for Ca and Mg the situation is radically different. On the one hand, the possibility to use Ca or Mg metal anodes would bring a breakthrough in terms of energy density; on the other, development of suitable electrolytes and cathodes with efficient multivalent ion migration are bottlenecks to overcome. This article is part of a discussion meeting issue 'Energy materials for a low carbon future'.

10.
Front Chem ; 7: 79, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30842941

RESUMEN

Batteries based on Ca hold the promise to leapfrog ahead regarding increases in energy densities and are especially attractive as Ca is the 5th most abundant element in the Earth's crust. The viability of Ca metal anodes has recently been shown by approaches that either use wide potential window electrolytes at moderately elevated temperatures or THF-based electrolytes at room temperature. This paper provides realistic estimates of the practical energy densities for Ca-based rechargeable batteries at the cell level, calculated using open source models for several concepts. The results from the Ca metal anode batteries indicate that doubled or even tripled energy density as compared to the state-of-the-art Li-ion batteries is viable if a practical proof-of-concept can be achieved.

11.
Dalton Trans ; 47(33): 11298-11302, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30010171

RESUMEN

The electrochemical oxidation of a transition metal oxide through calcium extraction is achieved for the first time. The 1D framework of Ca3Co2O6 is maintained upon oxidation and the new phase formed exhibits a modulated structure. The process occurs at high potential and is partially reversible, which opens prospects for a calcium battery proof-of-concept.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...