Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Surg Oncol ; 31(4): 2608-2620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38151623

RESUMEN

BACKGROUND: Neoadjuvant therapy (NAT) emerged as the standard of care for patients with pancreatic ductal adenocarcinoma (PDAC) who undergo surgery; however, surgery is morbid, and tools to predict resection margin status (RMS) and prognosis in the preoperative setting are needed. Radiomic models, specifically delta radiomic features (DRFs), may provide insight into treatment dynamics to improve preoperative predictions. METHODS: We retrospectively collected clinical, pathological, and surgical data (patients with resectable, borderline, locally advanced, and metastatic disease), and pre/post-NAT contrast-enhanced computed tomography (CT) scans from PDAC patients at the University of Texas Southwestern Medical Center (UTSW; discovery) and Humanitas Hospital (validation cohort). Gross tumor volume was contoured from CT scans, and 257 radiomics features were extracted. DRFs were calculated by direct subtraction of pre/post-NAT radiomic features. Cox proportional models and binary prediction models, including/excluding clinical variables, were constructed to predict overall survival (OS), disease-free survival (DFS), and RMS. RESULTS: The discovery and validation cohorts comprised 58 and 31 patients, respectively. Both cohorts had similar clinical characteristics, apart from differences in NAT (FOLFIRINOX vs. gemcitabine/nab-paclitaxel; p < 0.05) and type of surgery resections (pancreatoduodenectomy, distal or total pancreatectomy; p < 0.05). The model that combined clinical variables (pre-NAT carbohydrate antigen (CA) 19-9, the change in CA19-9 after NAT (∆CA19-9), and resectability status) and DRFs outperformed the clinical feature-based models and other radiomics feature-based models in predicting OS (UTSW: 0.73; Humanitas: 0.66), DFS (UTSW: 0.75; Humanitas: 0.64), and RMS (UTSW 0.73; Humanitas: 0.69). CONCLUSIONS: Our externally validated, predictive/prognostic delta-radiomics models, which incorporate clinical variables, show promise in predicting the risk of predicting RMS in NAT-treated PDAC patients and their OS or DFS.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/cirugía , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Neoadyuvante , Estudios Retrospectivos , Márgenes de Escisión , Radiómica , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/cirugía
2.
Oncogene ; 41(34): 4055-4065, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35851846

RESUMEN

Dysregulated fatty acid metabolism interacts with oncogenic signals, thereby worsening tumor aggressiveness. The stearoyl-CoA desaturating enzymes, SCD1 and SCD5, convert of saturated fatty acids to monounsaturated fatty acids. While SCD1 is frequently overexpressed in tumor cells and has been widely studied, SCD5 has both limited expression and poor characterization. Here we evaluated, in vitro and in vivo, the effects of SCD5 overexpression in a metastatic clone of 4T1. The results showed SCD5-driven reprogramming of fatty acid metabolism, involving desaturation of stearic acid to oleic acid, which eventually blocked SPARC secretion. The latter event reduced the aggressiveness of the 4T1 subclone by decreasing the ECM deposition and reverting the Epithelial to Mesenchymal Transition (EMT) status. Variation of the fatty acid profile by SCD5-gene transduction or the direct administration oleic acid reduces the immune suppressive activity of myeloid cells and promoting granulocytic myeloid-derived suppressor cell maturation, eventually favoring T-cell activation. The less immunosuppressive microenvironment generated by SCD5 overexpression was enhanced in Sparc-KO mice, indicating that both extracellular and endogenous SPARC additively regulate myeloid cell-suppressive activities. Overall, our data sheds light on exploring the oleic acid-dependent inhibition of SPARC secretion as a possible mechanism to reduce breast cancer malignancy.


Asunto(s)
Estearoil-CoA Desaturasa , Neoplasias de la Mama Triple Negativas , Animales , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Ácidos Grasos/metabolismo , Humanos , Ratones , Ácidos Oléicos , Osteonectina/genética , Estearoil-CoA Desaturasa/metabolismo , Microambiente Tumoral
3.
J Cancer ; 13(5): 1573-1587, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371312

RESUMEN

Background: Gender differences in melanoma incidence, metastasis formation and disease progression are increasingly evident in epidemiological studies, with women showing significantly better survival than men. Among factors possibly underlying the disparities, sex hormones seem to play a key role. Nonetheless, functional mechanisms are still unclear, except for the antitumor ability of Estrogen Receptor (ER) ß, whose expression determination has often been suggested for melanoma prognosis. In this study, we aimed at evaluating the molecular mechanisms and functional effects associated with ERß signaling by using its agonist LY500307. Methods: We evaluated the antitumor effect of the specific synthetic ERß agonist LY500307 on some human melanoma cell lines, selected for different genetic background, expression levels of ERs and tumor progression. The expression of α and ß estrogen receptors was investigated taking advantage of The Cancer Genome Atlas database and confirmed on some selected melanoma cell lines. The biological effects of LY500307 were determined in vitro looking at melanoma cell proliferation, cell cycle profiles and migration demonstrating by western blot the involvement of some pathway specific markers. The LY500307-dependent induction of cell death was also analyzed by flow cytometry and western blot analysis of caspase 3 and poly adenosine diphosphate-ribose polymerase (PARP). Results: A significant decrease in the expression of both ERs, even more pronounced for ERα, has been found in patients with metastatic NRAS mutation. Treatment with LY500307 significantly reduced the proliferation of melanoma cells showing a cell cycle arrest at the G2/M boundary phase and promoting apoptosis with different sensitivities associated with disease stage and mutation. Indeed, the ERß agonist affects melanoma migration, inducing a reversion of the epithelial-mesenchymal transition, more evident in a low aggressive primary melanoma cell line. Conclusion: These results demonstrate the capability of LY500307 to reduce melanoma malignancy, counteracting cell viability and dissemination, overall suggesting a possible future use of LY500307 in personalized combined therapy.

4.
Int J Pharm ; 613: 121391, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34923052

RESUMEN

Numerous clinical observations indicate that, despite novel therapeutic approaches, a high percentage of melanoma patients is non-responder or suffers of severe drug-related toxicity. To overcome these problems, we considered the option of designing, preparing and characterizing nanoemulsions and niosomes containing oleic acid, a pH-sensitive monounsaturated fatty acid holding per se an antimetastatic and anti-inflammatory role in melanoma. These new nanostructures will allow in vivo administration of oleic acid, otherwise toxic in its free form. For pulmonary route chitosan, a mucoadhesive agent, was enclosed in these nanocarriers to improve residence time at the lung site. A deep physical and chemical characterization was carried out evaluating size, ζ -potential, microviscosity, polarity as well as stability over time and in culture media. Moreover, their pH-sensitivity was evaluated by fluorometric assay. Cytotoxicity and cellular uptake were assessed in cultured normal fibroblasts and human melanoma cell lines. Interestingly, results obtained confirm nanocarrier stability and pH-sensitivity, associated to absence of cell toxicity, efficient cellular uptake and retention. Therefore, these new pH-sensitive oleic acid-based nanostructures could represent, by combining drug delivery in a pH-dependent manner with the antimetastatic potential of this fatty acid, a powerful strategy for more specific medicine against metastatic melanoma.


Asunto(s)
Melanoma , Nanopartículas , Portadores de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Melanoma/tratamiento farmacológico , Ácido Oléico
5.
Front Behav Neurosci ; 15: 660738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305544

RESUMEN

Social isolation is a powerful stressor capable of affecting brain plasticity and function. In the case of breast cancer, previous data indicate that stressful experiences may contribute to a worse prognosis, activating neuroendocrine and metabolism pathways, although the mechanisms underlying these effects are still poorly understood. In this study, we tested the hypothesis that chronic isolation stress (IS) may boost hypothalamic-pituitary-adrenal (HPA) axis activity, leading to changes in the hypothalamic expression of genes modulating both mood and metabolism in an animal model of breast cancer. This centrally activated signaling cascade would, in turn, affect the mammary gland microenvironment specifically targeting fat metabolism, leading to accelerated tumor onset. MMTVNeuTg female mice (a model of breast cancer developing mammary hyperplasia at 5 months of age) were either group-housed (GH) or subjected to IS from weaning until 5 months of age. At this time, half of these subjects underwent acute restraint stress to assess corticosterone (CORT) levels, while the remaining subjects were characterized for their emotional profile in the forced swimming and saccharin preference tests. At the end of the procedures, all the mice were sacrificed to assess hypothalamic expression levels of Brain-derived neurotrophic factor (Bdnf), Neuropeptide Y (NpY), Agouti-Related Peptide (AgRP), and Serum/Glucocorticoid-Regulated Protein Kinase 1 (SgK1). Leptin and adiponectin expression levels, as well as the presence of brown adipose tissue (BAT), were assessed in mammary fat pads. The IS mice showed higher CORT levels following acute stress and decreased expression of NpY, AgRP, and SgK1, associated with greater behavioral despair in the forced swimming test. Furthermore, they were characterized by increased consumption of saccharin in a preference test, suggesting an enhanced hedonic profile. The IS mice also showed an earlier onset of breast lumps (assessed by palpation) accompanied by elevated levels of adipokines (leptin and adiponectin) and BAT in the mammary fat pads. Overall, these data point to IS as a pervasive stressor that is able to specifically target neuronal circuits, mastered by the hypothalamus, modulating mood, stress reactivity and energy homeostasis. The activation of such IS-driven machinery may hold main implications for the onset and maintenance of pro-tumorigenic environments.

6.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207514

RESUMEN

Cutaneous Melanoma classification is constantly looking for specific and sensitive biomarkers capable of having a positive effect on diagnosis, prognosis and risk assessment, eventually affecting clinical outcome. Classical morphological, immunohistochemical and the well-known BRAF and NRAS genetic biomarkers do not allow the correct categorization of patients, being melanoma conditioned by high genetic heterogeneity. At the same time, classic prognostic methods are unsatisfactory. Therefore, new advances in omics and high-throughput analytical techniques have enabled the identification of numerous possible biomarkers, but their potentiality needs to be validated and standardized in prospective studies. Melanoma is considered an immunogenic tumor, being the first form of cancer to take advantage of the clinical use of the immune-checkpoint blockers. However, as immunotherapy is effective only in a limited number of patients, biomarkers associated with different responses are essential to select the more promising therapeutic approach and maximize clinical benefits. In this review, we summarize the most utilized biomarkers for Cutaneous Melanoma diagnosis, focusing on new prognostic and predictive biomarkers mainly associated with immunotherapy.

7.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209162

RESUMEN

The interplay between cancer cells and the tumor microenvironment (TME) has a fundamental role in tumor progression and response to therapy. The plethora of components constituting the TME, such as stroma, fibroblasts, endothelial and immune cells, as well as macromolecules, e.g., hormones and cytokines, and epigenetic factors, such as microRNAs, can modulate the survival or death of cancer cells. Actually, the TME can stimulate the genetically regulated programs that the cell puts in place under stress: apoptosis or, of interest here, autophagy. However, the implication of autophagy in tumor growth appears still undefined. Autophagy mainly represents a cyto-protective mechanism that allows cell survival but, in certain circumstances, also leads to the blocking of cell cycle progression, possibly leading to cell death. Since significant sex/gender differences in the incidence, progression and response to cancer therapy have been widely described in the literature, in this review, we analyzed the roles played by key components of the TME, e.g., estrogen and microRNAs, on autophagy regulation from a sex/gender-based perspective. We focused our attention on four paradigmatic and different forms of cancers-colon cancer, melanoma, lymphoma, and lung cancer-concluding that sex-specific differences may exert a significant impact on TME/cancer interaction and, thus, tumor growth.

8.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922607

RESUMEN

Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients.


Asunto(s)
Biomarcadores/análisis , MicroARNs/genética , Enfermedades Neurodegenerativas/diagnóstico , Humanos , MicroARNs/análisis , Enfermedades Neurodegenerativas/genética , Factores Sexuales
10.
Cancers (Basel) ; 12(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645881

RESUMEN

Worldwide, the total incidence of cutaneous melanoma is higher in men than in women, with some differences related to ethnicity and age and, above all, sex and gender. Differences exist in respect to the anatomic localization of melanoma, in that it is more frequent on the trunk in men and on the lower limbs in women. A debated issue is if-and to what extent-melanoma development can be attributed to gender-specific behaviors or to biologically intrinsic differences. In the search for factors responsible for the divergences, a pivotal role of sex hormones has been observed, although conflicting results indicate the involvement of other mechanisms. The presence on the X chromosome of numerous miRNAs and coding genes playing immunological roles represents another important factor, whose relevance can be even increased by the incomplete X chromosome random inactivation. Considering the known advantages of the female immune system, a different cancer immune surveillance efficacy was suggested to explain some sex disparities. Indeed, the complexity of this picture emerged when the recently developed immunotherapies unexpectedly showed better improvements in men than in women. Altogether, these data support the necessity of further studies, which consider enrolling a balanced number of men and women in clinical trials to better understand the differences and obtain actual gender-equitable healthcare.

11.
J Cell Commun Signal ; 14(3): 335-347, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32504411

RESUMEN

Appropriate tools for monitoring sarcoma progression are still limited. The aim of the present study was to investigate the value of miR-34a-5p (miR34a) as a circulating biomarker to follow disease progression and measure the therapeutic response. Stable forced re-expression of miR34a in Ewing sarcoma (EWS) cells significantly limited tumor growth in mice. Absolute quantification of miR34a in the plasma of mice and 31 patients showed that high levels of this miRNA inversely correlated with tumor volume. In addition, miR34a expression was higher in the blood of localized EWS patients than in the blood of metastatic EWS patients. In 12 patients, we followed miR34a expression during preoperative chemotherapy. While there was no variation in the blood miR34a levels in metastatic patients at the time of diagnosis or after the last cycle of preoperative chemotherapy, there was an increase in the circulating miR34a levels in patients with localized tumors. The three patients with the highest fold-increase in the miR levels did not show evidence of metastasis. Although this analysis should be extended to a larger cohort of patients, these findings imply that detection of the miR34a levels in the blood of EWS patients may assist with the clinical management of EWS.

12.
Cytokine Growth Factor Rev ; 51: 75-83, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31924512

RESUMEN

In the last few years cancer research more and more highlighted the importance of cell to cell communication in tumor progression. Among many other functional mechanisms, results evidenced the importance of miRNAs loaded into exosomes and their actions as mediators in intercellular communication, either in the tumor microenvironment or at distant sites. Deregulation of miRNA levels is a prerogative of cancer cells and is reflected in the miRNA cargo of tumor derived exosomes. Thus, learning of circulating miRNA activities add the missing piece we need to understand some unclear aspects of cancer biology. Here we summarized the current knowledge on exosome transfer capabilities between cancer cells and all the cells constituting tumor microenvironment with a particular focus on their miRNA cargos and regulatory functions. The clinical relevance of these molecular aspects is emphasized by numerous cell interactions that ultimately result in normal cell function defeat, relevant to increase tumor malignancy. The quantitative and qualitative evaluation of circulating miRNAs offers new perspective for better diagnosis and prognosis of cancer patients, eventually improving their management.


Asunto(s)
Vesículas Extracelulares/fisiología , MicroARNs/fisiología , Neoplasias/diagnóstico , Neoplasias/terapia , Biomarcadores de Tumor , Comunicación Celular , Exosomas/genética , Exosomas/patología , Humanos , MicroARNs/genética , Metástasis de la Neoplasia/terapia , Pronóstico , Microambiente Tumoral
13.
Cells ; 8(7)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331091

RESUMEN

Tamoxifen resistance is a major hurdle in the treatment of estrogen receptor (ER)-positive breast cancer. The mechanisms of tamoxifen resistance are not fully understood although several underlying molecular events have been suggested. Recently, we identified autoantibodies reacting with membrane-associated ERα (anti-ERα Abs) in sera of breast cancer patients, able to promote tumor growth. Here, we investigated whether anti-ERα Abs purified from sera of ER-positive breast cancer patients could contribute to tamoxifen resistance. Anti-ERα Abs inhibited tamoxifen-mediated effects on cell cycle and proliferation in MCF-7 cells. Moreover, anti-ERα Abs hampered the tamoxifen-mediated reduction of tumor growth in SCID mice xenografted with breast tumor. Notably, simvastatin-mediated disaggregation of lipid rafts, where membrane-associated ERα is embedded, restored tamoxifen sensitivity, preventing anti-ERα Abs effects. In conclusion, detection of serum anti-ERα Abs may help predict tamoxifen resistance and concur to appropriately inform therapeutic decisions concerning hormone therapy in ER-positive breast cancer patients.


Asunto(s)
Antineoplásicos Hormonales/inmunología , Autoanticuerpos/sangre , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/inmunología , Receptor alfa de Estrógeno/inmunología , Tamoxifeno/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos Hormonales/uso terapéutico , Femenino , Humanos , Células MCF-7 , Ratones , Ratones SCID , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Oncotarget ; 9(7): 7567-7581, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29484133

RESUMEN

Our previous data supported a role for the Stearoyl-CoA desaturase (SCD5) in protection against malignancy, whereby it appears to functionally modify tumor stroma impairing tumor spread. SCD5 is significantly expressed in primary melanoma, but becomes barely detectable at tumor advanced stages. Looking for the regulatory mechanisms underlying SCD5 reduced expression during melanoma progression, we demonstrated a significantly lower stability of SCD5 protein as well as the direct targeting of SCD5 mRNA by the oncogenic miR-221&222 in metastatic cell lines. Moreover, our results indicated the existence of a negative feedback loop between SCD5 and miR-221&222, in good agreement with their opposite functions. Also, we showed how SCD5 re-expression and the direct supplementation of its main product oleic acid (OA) can drive advanced melanoma cell lines toward differentiation and reversion of the epithelial-mesenchymal (EMT)-like process, eventually inducing a less malignant phenotype. Indeed, SCD5 re-established the sensitivity to all-trans retinoic acid in A375M metastatic melanoma, associated with increased levels of Tyrosinase, melanin production and reduced proliferation. As evidenced by the correct modulation of some key transcription factors, SCD5 managed by favoring a partial mesenchymal-to-epithelial (MET) transition in in vitro studies. Interestingly, a more complete MET, including E-cadherin re-expression correctly localized at cell membranes, was obtained in in vivo xenograft models, thus indicating the requirement of direct contacts between tumor cells and the surrounding microenvironment as well as the presence of some essential factors for SCD5 complete function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...