Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
medRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826433

RESUMEN

Background: Parkinson's disease (PD) is a prevalent neurodegenerative disorder where progressive neuron loss is driven by impaired brain bioenergetics, particularly mitochondrial dysfunction and disrupted cellular respiration. Terazosin (TZ), an α-1 adrenergic receptor antagonist with a known efficacy in treating benign prostatic hypertrophy and hypertension, has shown potential in addressing energy metabolism deficits associated with PD due to its action on phosphoglycerate kinase 1 (PGK1). This study aimed to investigate the safety, tolerability, bioenergetic target engagement, and optimal dose of TZ in neurologically healthy subjects. Methods: Eighteen healthy men and women (60 - 85 years old) were stratified into two cohorts based on maximum TZ dosages (5 mg and 10 mg daily). Methods included plasma and cerebrospinal fluid TZ concentration measurements, whole blood ATP levels, 31 Phosphorous magnetic resonance spectroscopy for brain ATP levels, 18 F-FDG PET imaging for cerebral metabolic activity, and plasma metabolomics. Results: Our results indicated that a 5 mg/day dose of TZ significantly increased whole blood ATP levels and reduced global cerebral 18 F-FDG PET uptake without significant side effects or orthostatic hypotension. These effects were consistent across sexes. Higher doses did not result in additional benefits and showed a potential biphasic dose-response. Conclusions: TZ at a dosage of 5 mg/day engages its metabolic targets effectively in both sexes without inducing significant adverse effects and provides a promising therapeutic avenue for mitigating energetic deficiencies. Further investigation via clinical trials to validate TZ's efficacy and safety in neurodegenerative (i.e., PD) contexts is warranted.

2.
Brain Sci ; 13(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37190640

RESUMEN

Post-COVID-19 syndrome (PCS) fatigue is typically most severe <6 months post-infection. Combining magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging with the glucose analog [18F]-Fluorodeoxyglucose (FDG) provides a comprehensive overview of the effects of PCS on regional brain volumes and metabolism, respectively. The primary purpose of this exploratory study was to investigate differences in MRI/PET outcomes between people < 6 months (N = 18, 11 female) and > 6 months (N = 15, 6 female) after COVID-19. The secondary purpose was to assess if any differences in MRI/PET outcomes were associated with fatigue symptoms. Subjects > 6 months showed smaller volumes in the putamen, pallidum, and thalamus compared to subjects < 6 months. In subjects > 6 months, fatigued subjects had smaller volumes in frontal areas compared to non-fatigued subjects. Moreover, worse fatigue was associated with smaller volumes in several frontal areas in subjects > 6 months. The results revealed no brain metabolism differences between subjects > 6 and < 6 months. However, both groups exhibited both regional hypo- and hypermetabolism compared to a normative database. These results suggest that PCS may alter regional brain volumes but not metabolism in people > 6 months, particularly those experiencing fatigue symptoms.

3.
Brain Sci ; 12(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35884627

RESUMEN

Δ9-Tetrahydrocannabinol is the main psychoactive component of cannabis and cannabidiol is purportedly responsible for many of the medicinal benefits. The effects of Δ9-tetrahydrocannabinol and cannabidiol in younger populations have been well studied; however, motor function, cognitive function, and cerebral glucose metabolism in older adults have not been extensively researched. The purpose of this study was to assess differences in cognitive function, motor function, and cerebral glucose metabolism (assessed via [18F]-fluorodeoxyglucose positron emission tomography) in older adults chronically using Δ9-tetrahydrocannabinol, cannabidiol, and non-using controls. Eight Δ9-tetrahydrocannabinol users (59.3 ± 5.7 years), five cannabidiol users (54.6 ± 2.1 years), and 16 non-users (58.2 ± 16.9 years) participated. Subjects underwent resting scans and performed cognitive testing (reaction time, Flanker Inhibitory Control and Attention Test), motor testing (hand/arm function, gait), and balance testing. Δ9-tetrahydrocannabinol users performed worse than both cannabidiol users and non-users on the Flanker Test but were similar on all other cognitive and motor tasks. Δ9-tetrahydrocannabinol users also had lower global metabolism and relative hypermetabolism in the bilateral amygdala, cerebellum, and brainstem. Chronic use of Δ9-tetrahydrocannabinol in older adults might negatively influence inhibitory control and alter brain activity. Future longitudinal studies with larger sample sizes investigating multiple Δ9-tetrahydrocannabinol:cannabidiol ratios on functional outcomes and cerebral glucose metabolism in older adults are necessary.

4.
Front Hum Neurosci ; 16: 833619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145388

RESUMEN

Common symptoms of multiple sclerosis (MS) include motor impairments of the lower extremities, particularly gait disturbances. Loss of balance and muscle weakness, representing some peripheral effects, have been shown to influence these symptoms, however, the individual role of cortical and subcortical structures in the central nervous system is still to be understood. Assessing [18F]fluorodeoxyglucose (FDG) uptake in the CNS can assess brain activity and is directly associated with regional neuronal activity. One potential modality to increase cortical excitability and improve motor function in patients with MS (PwMS) is transcranial direct current stimulation (tDCS). However, tDCS group outcomes may not mirror individual subject responses, which impedes our knowledge of the pathophysiology and management of diseases like MS. Three PwMS randomly received both 3 mA tDCS and SHAM targeting the motor cortex (M1) that controls the more-affected leg for 20 min on separate days before walking on a treadmill. The radiotracer, FDG, was injected at minute two of the 20 min walk and the subjects underwent a Positron emission tomography (PET) scan immediately after the task. Differences in relative regional metabolism of areas under the tDCS anode and the basal ganglia were calculated and investigated. The results indicated diverse and individualized responses in regions under the anode and consistent increases in some basal ganglia areas (e.g., caudate nucleus). Thus, anodal tDCS targeting the M1 that controls the more-affected leg of PwMS might be capable of affecting remote subcortical regions and modulating the activity (motor, cognitive, and behavioral functions) of the circuitry connected to these regions.

5.
Viruses ; 13(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835088

RESUMEN

Scientific evidence concerning the subacute and long-term effects of coronavirus disease 2019 (COVID-19) is on the rise. It has been established that infection by serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a systemic process that involves multiple organs. The complications and long-term consequences of COVID-19 are diverse and patients need a multidisciplinary treatment approach in the acute and post-acute stages of the disease. A significant proportion of COVID-19 patients experience neurological manifestations, some enduring for several months post-recovery. However, brain and skeletal muscle changes resultant from SARS CoV-2 infection remain largely unknown. Here, we provide a brief overview of the current knowledge, and usefulness, of [18F]fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) to investigate brain and skeletal muscles changes in Post-COVID-19 patients with persistent symptoms. Furthermore, a brief discussion of future 18F-FDG-PET/CT applications that might advance the current knowledge of the pathogenesis of post-COVID-19 is also provided.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , COVID-19/complicaciones , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , COVID-19/diagnóstico por imagen , COVID-19/metabolismo , Enfermedad Crónica , Fluorodesoxiglucosa F18 , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Síndrome Post Agudo de COVID-19
6.
Brain Sci ; 11(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34679427

RESUMEN

Asymmetrical lower limb weakness is an early symptom and significant contributor to the progressive worsening of walking ability in people with multiple sclerosis (PwMS). Transcranial direct current stimulation (tDCS) may effectively increase neural drive to the more-affected lower limb and, therefore, increase symmetrical activation. Four PwMS (1 female, age range: 27-57) underwent one session each of 3 mA or SHAM tDCS over the motor cortex corresponding to their more-affected limb followed by 20 min of treadmill walking at a self-selected speed. Two min into the treadmill task, the subjects were injected with the glucose analog [18F]fluorodeoxyglucose (FDG). Immediately after treadmill walking, the subjects underwent whole-body positron emission tomography (PET) imaging. Glucose uptake (GU) values were compared between the legs, the spatial distribution of FDG was assessed to estimate glucose uptake heterogeneity (GUh), and GU asymmetry indices (AIs) were calculated. After tDCS, GU was altered, and GUh was decreased in various muscle groups in each subject. Additionally, AIs went from asymmetric to symmetric after tDCS in the subjects that demonstrated asymmetrical glucose uptake during SHAM. These results indicate that tDCS improved GU asymmetries, potentially from an increased neural drive and a more efficient muscle activation strategy of the lower limb in PwMS.

7.
Neuroradiol J ; 34(4): 263-288, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33666110

RESUMEN

Neurodegenerative diseases (NDDs) are characterized by progressive neuronal loss, leading to dementia and movement disorders. NDDs broadly include Alzheimer's disease, frontotemporal lobar degeneration, parkinsonian syndromes, and prion diseases. There is an ever-increasing prevalence of mild cognitive impairment and dementia, with an accompanying immense economic impact, prompting efforts aimed at early identification and effective interventions. Neuroimaging is an essential tool for the early diagnosis of NDDs in both clinical and research settings. Structural, functional, and metabolic imaging modalities, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are widely available. They show encouraging results for diagnosis, monitoring, and treatment response evaluation. The current review focuses on the complementary role of various imaging modalities in relation to NDDs, the qualitative and quantitative utility of newer MRI techniques, novel radiopharmaceuticals, and integrated PET/MRI in the setting of NDDs.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Enfermedades Neurodegenerativas , Humanos , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/diagnóstico por imagen , Neuroimagen , Tomografía de Emisión de Positrones
8.
Brain Sci ; 10(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202753

RESUMEN

Transcranial direct current stimulation (tDCS) has been shown to alter cortical excitability. However, it is increasingly accepted that tDCS has high inter- and intra-subject response variability, which currently limits broad application and has prompted some to doubt if the current can reach the brain. This study reports individual cerebral blood flow responses in people with multiple sclerosis and neurologically healthy subjects that experienced 5 min of anodal tDCS at 1 mA, 2 mA, 3 mA, and 4 mA over either the dorsolateral prefrontal cortex (DLPFC) or the primary motor cortex (M1). The most notable results indicated anticipated changes in regional cerebral blood flow (rCBF) in two regions of one DLPFC subject (2 mA condition), and expected changes in one M1 subject in the 2 mA and 4 mA conditions and in another M1 subject in the 2 mA condition. There were also changes contrary to the expected direction in one DLPFC subject and in two M1 subjects. These data suggest the effects of tDCS might be site-specific and highlight the high variability and individualized responses increasingly reported in tDCS literature. Future studies should use longer stimulation durations and image at various time points after stimulation cessation when exploring the effects of tDCS on cerebral blood flow (CBF).

9.
Brain Sci ; 10(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823504

RESUMEN

Asymmetrical lower limb strength is a significant contributor to impaired walking abilities in people with multiple sclerosis (PwMS). Transcranial direct current stimulation (tDCS) may be an effective technique to enhance cortical excitability and increase neural drive to more-affected lower limbs. A sham-controlled, randomized, cross-over design was employed. Two women with MS underwent two 20 min sessions of either 3 mA tDCS or Sham before 20 min of treadmill walking at a self-selected speed. During walking, the participants were injected with the glucose analogue, [18F] fluorodeoxyglucose (FDG). Participants were then imaged to examine glucose metabolism and uptake asymmetries in the legs. Standardized uptake values (SUVs) were compared between the legs and asymmetry indices were calculated. Subject 2 was considered physically active (self-reported participating in at least 30 min of moderate-intensity physical activity on at least three days of the week for the last three months), while Subject 1 was physically inactive. In Subject 1, there was a decrease in SUVs at the left knee flexors, left upper leg, left and right plantar flexors, and left and right lower legs and SUVs in the knee extensors and dorsiflexors were considered symmetric after tDCS compared to Sham. Subject 2 showed an increase in SUVs at the left and right upper legs, right plantar flexors, and right lower leg with no muscle group changing asymmetry status. This study demonstrates that tDCS may increase neural drive to leg muscles and decrease glucose uptake during walking in PwMS with low physical activity levels.

10.
Brain Sci ; 10(4)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326515

RESUMEN

Transcranial direct current stimulation (tDCS) is a form of non-invasive neuromodulation that is increasingly being utilized to examine and modify several cognitive and motor functions. Although tDCS holds great potential, it is difficult to determine optimal treatment procedures to accommodate configurations, the complex shapes, and dramatic conductivity differences among various tissues. Furthermore, recent demonstrations showed that up to 75% of the tDCS current applied to rodents and human cadavers was shunted by the scalp, subcutaneous tissue, and muscle, bringing the effects of tDCS on the cortex into question. Consequently, it is essential to combine tDCS with human neuroimaging to complement animal and cadaver studies and clarify if and how tDCS can affect neural function. One viable approach is positron emission tomography (PET) imaging. PET has unique potential for examining the effects of tDCS within the central nervous system in vivo, including cerebral metabolism, neuroreceptor occupancy, and neurotransmitter activity/binding. The focus of this review is the emerging role of PET and potential PET radiotracers for studying tDCS-induced functional changes in the human brain.

11.
J Neuropsychiatry Clin Neurosci ; 32(4): 352-361, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32283991

RESUMEN

OBJECTIVE: The pathological cascades associated with the development of Alzheimer's disease (AD) have a common element: acidosis. T1rho MRI is a pH-sensitive measure, with higher values associated with greater neuropathological burden. The authors investigated the relationship between T1rho imaging and AD-associated pathologies as determined by available diagnostic imaging techniques. METHODS: Twenty-seven participants (men, N=13, women, N=14; ages 55-90) across the cognitive spectrum (healthy control subjects [HCs] with normal cognition, N=17; participants with mild cognitive impairment [MCI], N=7; participants with mild AD, N=3) underwent neuropsychological testing, MRI (T1-weighted and T1rho [spin-lattice relaxation time in the rotating frame]), and positron emission tomography imaging ([11C]Pittsburg compound B for amyloid burden [N=26] and [18F]fluorodeoxyglucose for cerebral glucose metabolism [N=12]). The relationships between global T1rho values and neuropsychological, demographic, and imaging measures were explored. RESULTS: Global mean and median T1rho were positively associated with age. After controlling for age, higher global T1rho was associated with poorer cognitive function, poorer memory function (immediate and delayed memory scores), higher amyloid burden, and more abnormal cerebral glucose metabolism. Regional T1rho values, when controlling for age, significantly differed between HCs and participants with MCI or AD in select frontal, cingulate, and parietal regions. CONCLUSIONS: Higher T1rho values were associated with greater cognitive impairment and pathological burden. T1rho, a biomarker that varies according to a feature common to each cascade rather than one that is unique to a particular pathology, has the potential to serve as a metric of neuropathology, theoretically providing a measure for assessing pathological status and for monitoring the neurodegeneration trajectory.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva , Glucosa/metabolismo , Imagen por Resonancia Magnética/normas , Neuroimagen/normas , Tomografía de Emisión de Positrones/normas , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Compuestos de Anilina , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Femenino , Fluorodesoxiglucosa F18 , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Tiazoles
12.
Brain Sci ; 10(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033094

RESUMEN

Animal and transcranial magnetic stimulation motors have evoked potential studies suggesting that the currently used transcranial direct current stimulation (tDCS) intensities produce measurable physiological changes. However, the validity, mechanisms, and general efficacy of this stimulation modality are currently being scrutinized. The purpose of this pilot study was to investigate the effects of dorsolateral prefrontal cortex tDCS on cerebral blood flow. A sample of three people with multiple sclerosis underwent two blocks of five randomly assigned tDCS intensities (1, 2, 3, 4 mA, and sham; 5 min each) and [15O]water positron emission tomography imaging. The relative regional (i.e., areas under the electrodes) and global cerebral blood flow were calculated. The results revealed no notable differences in regional or global cerebral blood flow from the different tDCS intensities. Thus, 5 min of tDCS at 1, 2, 3, and 4 mA did not result in immediate changes in cerebral blood flow. To achieve sufficient magnitudes of intracranial electrical fields without direct peripheral side effects, novel methods may be required.

13.
Appl Physiol Nutr Metab ; 45(4): 450-452, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31841355

RESUMEN

This exploratory pilot study investigated the effects of chronic Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on cerebral glucose metabolism in people with multiple sclerosis (PwMS). Compared with nonusers, THC users had hypermetabolism of 3 regions (p < 0.039, d >1.17) in left temporal areas, while CBD users had hypometabolism of 5 regions (p < 0.032, d > 1.31) in left temporal areas. This study highlights the need to discriminate between THC and CBD in future cannabis studies. Novelty Chronic THC and CBD use had disparate effects on cerebral glucose metabolism in PwMS.


Asunto(s)
Corteza Cerebral/metabolismo , Dronabinol/farmacología , Glucosa/metabolismo , Adulto , Anciano , Cannabidiol/farmacología , Dronabinol/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple , Proyectos Piloto
14.
Tomography ; 5(1): 161-169, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30854454

RESUMEN

Radiomics is an image analysis approach for extracting large amounts of quantitative information from medical images using a variety of computational methods. Our goal was to evaluate the utility of radiomic feature analysis from 18F-fluorothymidine positron emission tomography (FLT PET) obtained at baseline in prediction of treatment response in patients with head and neck cancer. Thirty patients with advanced-stage oropharyngeal or laryngeal cancer, treated with definitive chemoradiation therapy, underwent FLT PET imaging before treatment. In total, 377 radiomic features of FLT uptake and feature variants were extracted from volumes of interest; these features variants were defined by either the primary tumor or the total lesion burden, which consisted of the primary tumor and all FLT-avid nodes. Feature variants included normalized measurements of uptake, which were calculated by dividing lesion uptake values by the mean uptake value in the bone marrow. Feature reduction was performed using clustering to remove redundancy, leaving 172 representative features. Effects of these features on progression-free survival were modeled with Cox regression and P-values corrected for multiple comparisons. In total, 9 features were considered significant. Our results suggest that smaller, more homogenous lesions at baseline were associated with better prognosis. In addition, features extracted from total lesion burden had a higher concordance index than primary tumor features for 8 of the 9 significant features. Furthermore, total lesion burden features showed lower interobserver variability.


Asunto(s)
Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Adulto , Anciano , Quimioradioterapia/métodos , Didesoxinucleósidos , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Variaciones Dependientes del Observador , Tomografía de Emisión de Positrones/métodos , Pronóstico , Estudios Prospectivos , Radiofármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Resultado del Tratamiento
15.
J Neuroimaging ; 29(1): 85-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461110

RESUMEN

BACKGROUND AND PURPOSE: To explore the potential for simplified measures of [11 C]PIB uptake to serve as a surrogate for cerebral blood flow (CBF) measures, thereby, providing both pathological and functional information in the same scan. METHODS: Participants (N = 24, 16 M, 8 F, 57-87 years) underwent quantitative [15 O]water imaging and dynamic [11 C]PIB imaging. Time-activity curves were created for each participant's regional [11 C]PIB data scaled in standardized uptake values (SUVs). The frame in which maximal uptake occurred was defined for each subject (ie, "peak"). The concentration (SUV) for each region at the individual's peak, during the 3.5-4 minute time interval and for the initial 6 minute sum, was determined. R1 (ie, relative delivery using cerebellum as reference tissue) from the simplified reference tissue model 2 was determined for each region. PIB SUVs were compared to the absolute CBF global and regional values (in mL/minute/100 mL) and the R1 values were compared to the cerebellar-normalized rCBF. RESULTS: Significant linear relationships were found for all SUV measures with measures of absolute global and regional CBF that were comparable to the relationship between normalized CBF and R1. The individual SUVpeak exhibited the strongest relationship both regionally and globally. All individuals and all regions had highly significant regression slopes. Age, gender, or amyloid burden did not influence the relationship. CONCLUSION: Early PIB uptake has the potential to effectively serve as a surrogate for global and regional CBF measures. The simple and readily obtainable individual's SUVpeak value was the strongest predictor regionally and globally of CBF.


Asunto(s)
Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Tomografía de Emisión de Positrones/métodos , Anciano , Anciano de 80 o más Años , Encéfalo/irrigación sanguínea , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Hypertension ; 72(2): 476-482, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29915015

RESUMEN

Greater aortic stiffness and pulse pressure are associated with cerebrovascular remodeling, reduced white matter microstructure, and cognitive performance with aging in humans. However, it is unclear whether aortic stiffness and pulse pressure are associated with reduced basal global cerebral blood flow (CBF) and cerebrovascular reserve among older adults. Global CBF was quantified in 205 adults (range, 19-87 years; mean±SE: 30.6±1.3 years) using quantitative [15O]water brain positron emission tomography imaging. In a subset of older adults (n=24; 70.0±2.0 years), aortic stiffness (carotid femoral pulse wave velocity) and cerebrovascular reserve (change in global CBF after intravenous infusion of acetazolamide) were assessed. In the entire cohort, global CBF was lower in older compared with young adults (36.5±1.1 versus 50.5±0.7 mL/min per 100 mL; P<0.001). Global CBF was higher in young women compared with young men (51.0±0.30 versus 47.4±0.03 mL/min per 100 mL; P<0.001) but did not differ between older women and men (P=0.63). In older adults, greater carotid femoral pulse wave velocity was associated with lower cerebrovascular reserve (r=-0.68; P=0.001 adjusted for age, sex, and mean arterial pressure) but not global CBF (r=0.13; P=0.60). Brachial pulse pressure was not associated with lower cerebrovascular reserve (r=-0.37; P=0.159) when adjusted for age and sex. These data indicate that the age-related increases in aortic stiffness may contribute, in part, to the brain's impaired ability to augment blood flow in response to a stimulus with aging in humans.


Asunto(s)
Envejecimiento/fisiología , Aorta Torácica/fisiopatología , Velocidad del Flujo Sanguíneo/fisiología , Circulación Cerebrovascular/fisiología , Cognición/fisiología , Rigidez Vascular/fisiología , Sustancia Blanca/irrigación sanguínea , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Análisis de la Onda del Pulso , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
17.
Epilepsy Behav ; 78: 62-67, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29175222

RESUMEN

OBJECTIVE: The objective of this study was to determine whether preoperative [18F]fludeoxyglucose (FDG)-positron emission tomography (PET) asymmetry in temporal lobe metabolism predicts neuropsychological and seizure outcomes after temporal lobectomy (TL). METHODS: An archival sample of 47 adults with unilateral temporal lobe epilepsy who underwent TL of their language-dominant (29 left, 1 right) or nondominant (17 right) hemisphere were administered neuropsychological measures pre- and postoperatively. Post-TL seizure outcomes were measured at 1year. Regional FDG uptake values were defined by an automated technique, and a quantitative asymmetry index (AI) was calculated to represent the relative difference in the FDG uptake in the epileptic relative to the nonepileptic temporal lobe for four regions of interest: medial anterior temporal (MAT), lateral anterior temporal (LAT), medial posterior temporal (MPT), and lateral posterior temporal (LPT) cortices. RESULTS: In language-dominant TL, naming outcomes were predicted by FDG uptake asymmetry in the MAT (r=-0.38) and LPT (r=-0.45) regions. For all patients, visual search and motor speed outcomes were predicted by FDG uptake asymmetry in all temporal regions (MPT, r=0.42; MAT, r=0.34; LPT, r=0.47; LAT, r=0.51). Seizure outcomes were predicted by FDG uptake asymmetry in the MAT (r=0.36) and MPT (r=0.30) regions. In all of these significant associations, greater hypometabolism in regions of the epileptic temporal lobe was associated with better postoperative outcomes. CONCLUSIONS: Our results support the conclusion that FDG uptake asymmetry is a useful clinical tool in assessing risk for cognitive changes in patients being considered for TL.


Asunto(s)
Lobectomía Temporal Anterior/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Memoria/fisiología , Tomografía de Emisión de Positrones/métodos , Convulsiones/cirugía , Lóbulo Temporal/metabolismo , Lóbulo Temporal/cirugía , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Periodo Posoperatorio , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Resultado del Tratamiento
18.
J Pharm Sci ; 107(2): 745-755, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28942005

RESUMEN

The medical use of marijuana is increasing, yet little is known about the exposure-response relationship for its psychoactive effects. It is well known that the plasma concentrations of the principal psychoactive component of marijuana, Δ9-tetrahydrocannabinol (THC), do not directly correlate to the observed psychoactive effects. The purpose of this research was to use an effect-compartment modeling approach to predict and relate the concentrations of the psychoactive components (THC and its active metabolite) in the "hypothetical" effect-site compartment to the observed psychoactive effects. A "hypothetical" effect-compartment model was developed using literature data to characterize the observed delay in peak "highness" ratings compared with plasma concentrations of the psychoactive agents following intravenous administration of THC. A direct relationship was established between the reported psychoactive effects ("highness" or intoxication) and the predicted effect-site concentrations of THC. The differences between estimated equilibration half-lives for THC and THC-OH in the effect-compartment model indicated the differential equilibration of parent drug and the active metabolite between plasma and the effect-site. These models contribute to the understanding of the pharmacokinetic-pharmacodynamic relationships associated with marijuana use and are important steps in the prediction of pharmacodynamic effects related to the psychoactive components in marijuana.


Asunto(s)
Dronabinol/análogos & derivados , Plasma/metabolismo , Psicotrópicos/efectos adversos , Psicotrópicos/sangre , Administración Intravenosa/métodos , Adolescente , Adulto , Cannabis/efectos adversos , Dronabinol/efectos adversos , Dronabinol/sangre , Dronabinol/metabolismo , Femenino , Semivida , Humanos , Masculino , Fumar Marihuana/efectos adversos , Fumar Marihuana/sangre , Fumar Marihuana/metabolismo , Persona de Mediana Edad , Psicotrópicos/metabolismo , Adulto Joven
19.
AAPS J ; 20(1): 15, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29218424

RESUMEN

To illustrate the use of imaging to quantify the transfer of materials from the nasal cavity to other anatomical compartments, specifically, transfer to the brain using the thymidine analogue, [18F]fluorothymidine (FLT), and the glucose analogue, [18F]fluorodeoxyglucose (FDG). Anesthetized rats were administered FLT or FDG by intranasal instillation (IN) or tail-vein injection (IV). PET/CT imaging was performed for up to 60 min. Volumes-of-interest (VOIs) for the olfactory bulb (OB) and the remaining brain were created on the CT and transferred to the co-registered dynamic PET. Time-activity curves (TACs) were generated and compared. The disposition patterns were successfully visualized and quantified and differences in brain distribution patterns were observed. For FDG, the concentration was substantially higher in the OB than the brain only after IN administration. For FLT, the concentration was higher in the OB than the brain after both IN and IV and higher after IN than after IV administration at all times, whereas the concentration in the brain was higher after IN than after IV administration at early times only. Approximately 50 and 9% of the IN FDG and FLT doses, respectively, remained in the nasal cavity at 20 min post-administration. The initial phase of clearance was similar for both agents (t1/2 = 2.53 and 3.36 min) but the slow clearance phase was more rapid for FLT than FDG (t1/2 = 32.1 and 85.2 min, respectively). Pharmacoimaging techniques employing PET/CT can be successfully implemented to quantitatively investigate and compare the disposition of radiolabeled agents administered by a variety of routes.


Asunto(s)
Barrera Hematoencefálica , Didesoxinucleósidos/farmacocinética , Fluorodesoxiglucosa F18/farmacocinética , Tomografía de Emisión de Positrones , Administración Intranasal , Animales , Cavidad Nasal/metabolismo , Bulbo Olfatorio/metabolismo , Permeabilidad , Ratas , Ratas Sprague-Dawley
20.
AAPS J ; 20(1): 16, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29218445

RESUMEN

To evaluate the role of nucleoside transporters in the nose-to-brain uptake of [18F]fluorothymidine (FLT), an equilibrative nucleoside transporter (ENT1,2) and concentrative nucleoside transporter (CNT1-3) substrate, using PET to measure local tissue concentrations. Anesthetized Sprague-Dawley rats were administered FLT by intranasal (IN) instillation or tail-vein injection (IV). NBMPR (nitrobenzylmercaptopurine riboside), an ENT1 inhibitor, was administered either IN or intraperitoneally (IP). Dynamic PET imaging was performed for up to 40 min. A CT was obtained for anatomical co-registration and attenuation correction. Time-activity curves (TACs) were generated for the olfactory bulb (OB) and remaining brain, and the area-under-the-curve (AUC) for each TAC was calculated to determine the total tissue exposure of FLT. FLT concentrations were higher in the OB than in the rest of the brain following IN administration. IP administration of NBMPR resulted in increased OB and brain FLT exposure following both IN and IV administration, suggesting that NBMPR decreases the clearance rate of FLT from the brain. When FLT and NBMPR were co-administered IN, there was a decrease in the OB AUC while an increase in the brain AUC was observed. The decrease in OB exposure was likely the result of inhibition of ENT1 uptake activity in the nose-to-brain transport pathway. FLT distribution patterns show that nucleoside transporters, including ENT1, play a key role in the distribution of transporter substrates between the nasal cavity and the brain via the OB.


Asunto(s)
Didesoxinucleósidos/farmacocinética , Mucosa Nasal/metabolismo , Proteínas de Transporte de Nucleósidos/fisiología , Bulbo Olfatorio/metabolismo , Tomografía de Emisión de Positrones , Animales , Área Bajo la Curva , Ratas , Ratas Sprague-Dawley , Tioinosina/análogos & derivados , Tioinosina/farmacología , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...