Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 143, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764049

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a debilitating illness in humans that causes permanent loss of movement or sensation. To treat SCI, exosomes, with their unique benefits, can circumvent limitations through direct stem cell transplantation. Therefore, we utilized Gelfoam encapsulated with exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-EX) in a rat SCI model. METHODS: SCI model was established through hemisection surgery in T9 spinal cord of female Sprague-Dawley rats. Exosome-loaded Gelfoam was implanted into the lesion site. An in vivo uptake assay using labeled exosomes was conducted on day 3 post-implantation. Locomotor functions and gait analyses were assessed using Basso-Beattie-Bresnahan (BBB) locomotor rating scale and DigiGait Imaging System from weeks 1 to 8. Nociceptive responses were evaluated through von Frey filament and noxious radiant heat tests. The therapeutic effects and potential mechanisms were analyzed using Western blotting and immunofluorescence staining at week 8 post-SCI. RESULTS: For the in vivo exosome uptake assay, we observed the uptake of labeled exosomes by NeuN+, Iba1+, GFAP+, and OLIG2+ cells around the injured area. Exosome treatment consistently increased the BBB score from 1 to 8 weeks compared with the Gelfoam-saline and SCI control groups. Additionally, exosome treatment significantly improved gait abnormalities including right-to-left hind paw contact area ratio, stance/stride, stride length, stride frequency, and swing duration, validating motor function recovery. Immunostaining and Western blotting revealed high expression of NF200, MBP, GAP43, synaptophysin, and PSD95 in exosome treatment group, indicating the promotion of nerve regeneration, remyelination, and synapse formation. Interestingly, exosome treatment reduced SCI-induced upregulation of GFAP and CSPG. Furthermore, levels of Bax, p75NTR, Iba1, and iNOS were reduced around the injured area, suggesting anti-inflammatory and anti-apoptotic effects. Moreover, exosome treatment alleviated SCI-induced pain behaviors and reduced pain-associated proteins (BDNF, TRPV1, and Cav3.2). Exosomal miRNA analysis revealed several promising therapeutic miRNAs. The cell culture study also confirmed the neurotrophic effect of HucMSCs-EX. CONCLUSION: Implantation of HucMSCs-EX-encapsulated Gelfoam improves SCI-induced motor dysfunction and neuropathic pain, possibly through its capabilities in nerve regeneration, remyelination, anti-inflammation, and anti-apoptosis. Overall, exosomes could serve as a promising therapeutic alternative for SCI treatment.


Asunto(s)
Modelos Animales de Enfermedad , Exosomas , Células Madre Mesenquimatosas , Neuralgia , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/terapia , Exosomas/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Ratas , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Locomoción , Esponja de Gelatina Absorbible , Cordón Umbilical/citología
2.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34948144

RESUMEN

Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.


Asunto(s)
Axones , Exosomas/trasplante , Traumatismos de los Nervios Periféricos , Impresión Tridimensional , Nervio Ciático , Andamios del Tejido/química , Animales , Axones/metabolismo , Axones/patología , Humanos , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Nervio Ciático/patología
3.
J Pain Res ; 13: 3257-3268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304105

RESUMEN

PURPOSE: Nerve injury-induced pain is difficult to treat. In this study, we developed an alginate scaffold with human umbilical cord mesenchymal stem cell exosomes (EX-SC) to treat nerve injury-induced pain. MATERIALS AND METHODS: The scaffold was prepared and characterized for its physical traits and biocompatibility. In vitro studies of PC12 and HEK293 cells were used to evaluate the neuroprotective and neurotrophic effects of exosomes. Right L5/6 spinal nerve ligation (SNL) was performed in Sprague-Dawley rats to induce mechanical allodynia and thermal hyperalgesia, evaluated by von Frey hair and radiant heat tests. The EX-SC was wrapped around ligated L5/6 spinal nerves for treatment. Western blotting and immunofluorescence staining were used to evaluate neuron/glial activation, cytokines and neurotrophic factor of affected dorsal root ganglion (DRG). RESULTS: In cell culture assay, the exosomes induce neurite outgrowth of PC12 cells and protect PC12 and HEK293 cells against formaldehyde acid treatment. On post-ligation day 21, rats receiving EX-SC had significantly higher median (interquartile range) withdrawal threshold and latency [14.1 (13.7-15.5) g, 14.2 (13.7-15.3) s] than saline-SC-treated rats [2.1 (1.7-3.0) g, 2.0 (1.8-2.4) s, P=0.02 and 0.002]. The EX-SC also attenuated SNL-induced up-regulation of c-Fos, GFAP, Iba1, TNF-α and IL-1ß, while enhancing the level of IL-10 and GDNF, in the ipsilateral L5/6 DRG. After implantation for 21 days, the EX-SC enhanced the expression of myelin basic protein and IL-10 in injured L5/6 axons. CONCLUSION: We demonstrate the EX-SC possesses antinociceptive, anti-inflammation and pro-neurotrophic effects in the SNL pain model. It could be a promising therapeutic alternative for nerve injury-induced pain.

4.
J Vis Exp ; (141)2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30474623

RESUMEN

Wound healing is a dynamic repair process and is the most complex biological process in human life. In response to burn injury, alterations in biological pathways impair the inflammation response, resulting in delayed wound healing. Impaired wound healing frequently occurs in patients with diabetes leading to unfavorable outcomes such as amputation. Hence, dressings having beneficial effect in promoting burn wound repair are needed. However, studies on burn wound treatment are limited due to lack of proper animal models. Our previous study demonstrated wound-healing performance in rat and swine models using a minimally invasive surgical technique. This study aimed to demonstrate a swine model of severe burn injury that eliminates wound contraction and more closely approximates the human processes of re-epithelialization and new tissue formation. This protocol provides a detailed procedure for creating consistent burn wounds and examining the wound-healing performance under the treatment of an experimental dressing in a swine model. Six burn wounds were created symmetrically on the dorsum, which were covered with a clinical dressing composed of four layers: an inner contact layer of experimental materials, an inner intermediate layer of waterproof film, an outer intermediate layer of gauze, and an outer layer of adhesive plaster. Upon the completion of experiments, wound closure, wound area, and Vancouver Scar Scale score were examined. The samples of skin resected from each animal post-sacrifice were histologically prepared and stained using hematoxylin and eosin staining. Antibacterial activity of each dressing in the context of wound healing was also examined. The application of the clinical dressing to the wounds in swine model mimics the biological processes of human wound healing with respect to the processes of epithelialization, cellular proliferation, and angiogenesis. Therefore, this swine model provides an easy-to-learn, cost-effective, and robust method to assess the effect of clinical dressings in severe burn injury.


Asunto(s)
Vendajes/normas , Quemaduras/terapia , Cicatrización de Heridas/fisiología , Animales , Modelos Animales de Enfermedad , Humanos , Porcinos
5.
J Mater Sci Mater Med ; 29(7): 100, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946882

RESUMEN

The original version of this article unfortunately contained a mistake. The country was incorrect in the authors affiliations. It should read as "ROC". The corrected affiliations are given below.

6.
Biomed Res Int ; 2017: 2329868, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204439

RESUMEN

The pathogenesis of ketamine cystitis (KC) has been recently linked with immune response to patients but the same has not yet been established. Hence, this study aims to propose a possible immune mechanism of irreversible bladder damage caused by KC. A total of 53 KC patients and 21 healthy volunteers as controls have been retrospectively assessed. The levels of serum immunoglobulin E (IgE), IL-6, and IFN-γ of KC patients were significantly higher than those of controls, whereas the TGF-ß levels of KC patients substantially reduced but the IL-2 and IL-4 levels of KC patients were comparable to those of controls. Moreover, the KC patients had significantly higher counts of TH1, TH2, and TH17 cells than those of controls. The immune response of KC users may begin with the IL-6 production and differentiation of TH17 and may be followed by alternating between high expressions of TH1 and TH2. The IL-6 may further suppress the TREG cells which can aggravate chronic inflammation in KC patients and the imbalance in TH17 and TREG cells may involve the pathogenesis of KC. Further investigation is needed to define the role of IL-6 in TH1/TH2/TH17-regulated signaling pathway in ketamine-induced cystitis.


Asunto(s)
Cistitis/inmunología , Inmunidad Innata , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Adulto , Cistitis/patología , Femenino , Humanos , Inmunoglobulina E/sangre , Interferón gamma/sangre , Interleucina-2/sangre , Interleucina-2/inmunología , Interleucina-4/sangre , Interleucina-4/inmunología , Interleucina-6/sangre , Interleucina-6/inmunología , Ketamina/metabolismo , Masculino , Factor de Crecimiento Transformador beta/sangre , Factor de Crecimiento Transformador beta/inmunología
7.
J Mater Sci Mater Med ; 28(12): 192, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29143185

RESUMEN

Stem cells derived from oral tissue represent a highly attractive alternative source for clinical bone regeneration because they can be collected by non-invasive or minimally invasive procedures. Herein, we describe the human dental stem cells (DSCs) deriving from buccal fat pads (BFP), dental pulp (DP) of impacted teeth, and periodontal ligaments (PDL) to obtain BFPSCs, DPSCs, and PDLSCs, respectively. Cells were purified with selected medium and expanded through passages in stem cell culture medium. Purified cells were characterized for stemness by their growth rate, immunostaining, and multilineage differentiation ability. They showed plastic adherence, expression of stemness-specific markers, and multilineage differentiation potential. Immunocytochemistry analysis confirmed that DPSCs had more osteogenic potential than BFSCs and PDLSCs. Calcium-rich deposits, evaluated by von Kossa and Alizarin red staining, showed greater mineralization when DPSCs were cultured on collagen type I matrix than without collagen. Furthermore, DPSC-seeded collagen type I matrix maintained consistent osteogenesis and boosted mineral formation by 1-2 weeks over that in DPSCs cultured without collagen. Radiographic analysis of DPSC-seeded collagen type I matrix transplanted into rat cranial defects showed significant bone regeneration after 8 weeks. These results suggested that the redundant oral tissue can be used as a source of adult multipotent stem cells for clinical bone regeneration. Triple overlay images with biomarkers (red), nuclei (blue) and bright field morphology of DPSCs. The specifically osteo-differentiation shown by osteocalcin (left) expression and lack of sox9 (right) expressed in the images below which were cultured with collagen matrix, contrast with no collagen matrix group above.


Asunto(s)
Tejido Adiposo/citología , Colágeno Tipo I , Pulpa Dental/citología , Osteogénesis/fisiología , Ligamento Periodontal/citología , Células Madre/fisiología , Animales , Trasplante Óseo , Técnicas de Cultivo de Célula , Humanos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA