Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Prog Mol Subcell Biol ; 59: 115-143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34050864

RESUMEN

Protein aggregation is now a common hallmark of numerous human diseases, most of which involve cytosolic aggregates including Aß (AD) and ⍺-synuclein (PD) in Alzheimer's disease and Parkinson's disease. However, it is also evident that protein aggregation can also occur in the lumen of the endoplasmic reticulum (ER) that leads to specific diseases due to loss of protein function or detrimental effects on the host cell, the former is inherited in a recessive manner where the latter are dominantly inherited. However, the mechanisms of protein aggregation, disaggregation and degradation in the ER are not well understood. Here we provide an overview of factors that cause protein aggregation in the ER and how the ER handles aggregated proteins. Protein aggregation in the ER can result from intrinsic properties of the protein (hydrophobic residues in the ER), oxidative stress or nutrient depletion. The ER has quality control mechanisms [chaperone functions, ER-associated protein degradation (ERAD) and autophagy] to ensure only correctly folded proteins exit the ER and enter the cis-Golgi compartment. Perturbation of protein folding in the ER activates the unfolded protein response (UPR) that evolved to increase ER protein folding capacity and efficiency and degrade misfolded proteins. Accumulation of misfolded proteins in the ER to a level that exceeds the ER-chaperone folding capacity is a major factor that exacerbates protein aggregation. The most significant ER resident protein that prevents protein aggregation in the ER is the heat shock protein 70 (HSP70) homologue, BiP/GRP78, which is a peptide-dependent ATPase that binds unfolded/misfolded proteins and releases them upon ATP binding. Since exogenous factors can also reduce protein misfolding and aggregation in the ER, such as chemical chaperones and antioxidants, these treatments have potential therapeutic benefit for ER protein aggregation-associated diseases.


Asunto(s)
Agregado de Proteínas , Pliegue de Proteína , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico/genética , Humanos , Agregado de Proteínas/genética , Control de Calidad
2.
Blood ; 135(21): 1899-1911, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32128578

RESUMEN

Hemophilia A, an X-linked bleeding disorder caused by deficiency of factor VIII (FVIII), is treated by protein replacement. Unfortunately, this regimen is costly due to the expense of producing recombinant FVIII as a consequence of its low-level secretion from mammalian host cells. FVIII expression activates the endoplasmic reticulum (ER) stress response, causes oxidative stress, and induces apoptosis. Importantly, little is known about the factors that cause protein misfolding and aggregation in metazoans. Here, we identified intrinsic and extrinsic factors that cause FVIII to form aggregates. We show that FVIII forms amyloid-like fibrils within the ER lumen upon increased FVIII synthesis or inhibition of glucose metabolism. Significantly, FVIII amyloids can be dissolved upon restoration of glucose metabolism to produce functional secreted FVIII. Two ER chaperone families and their cochaperones, immunoglobulin binding protein (BiP) and calnexin/calreticulin, promote FVIII solubility in the ER, where the former is also required for disaggregation. A short aggregation motif in the FVIII A1 domain (termed Aggron) is necessary and sufficient to seed ß-sheet polymerization, and BiP binding to this Aggron prevents amyloidogenesis. Our findings provide novel insight into mechanisms that limit FVIII secretion and ER protein aggregation in general and have implication for ongoing hemophilia A gene-therapy clinical trials.


Asunto(s)
Amiloide/química , Estrés del Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Factor VIII/metabolismo , Glucosa/farmacología , Chaperonas Moleculares/metabolismo , Amiloide/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Factor VIII/genética , Hemostáticos , Células Hep G2 , Humanos , Chaperonas Moleculares/genética , Edulcorantes/farmacología
3.
Elife ; 82019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31184304

RESUMEN

Regulated proinsulin biosynthesis, disulfide bond formation and ER redox homeostasis are essential to prevent Type two diabetes. In ß cells, protein disulfide isomerase A1 (PDIA1/P4HB), the most abundant ER oxidoreductase of over 17 members, can interact with proinsulin to influence disulfide maturation. Here we find Pdia1 is required for optimal insulin production under metabolic stress in vivo. ß cell-specific Pdia1 deletion in young high-fat diet fed mice or aged mice exacerbated glucose intolerance with inadequate insulinemia and increased the proinsulin/insulin ratio in both serum and islets compared to wildtype mice. Ultrastructural abnormalities in Pdia1-null ß cells include diminished insulin granule content, ER vesiculation and distention, mitochondrial swelling and nuclear condensation. Furthermore, Pdia1 deletion increased accumulation of disulfide-linked high molecular weight proinsulin complexes and islet vulnerability to oxidative stress. These findings demonstrate that PDIA1 contributes to oxidative maturation of proinsulin in the ER to support insulin production and ß cell health.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Proinsulina/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Disulfuros/metabolismo , Retículo Endoplásmico/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Ratones Noqueados , Ratones Transgénicos , Dilatación Mitocondrial , Obesidad/etiología , Obesidad/genética , Estrés Oxidativo , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/genética
5.
Biosci Rep ; 37(2)2017 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-28093457

RESUMEN

The unfolded protein response (UPR) is a conserved signalling pathway activated on the accumulation of unfolded proteins within the endoplasmic reticulum (ER), termed ER stress. Upon ER stress, HAC1/XBP1 undergoes exon/intron-specific excision by inositol requiring enzyme 1 (IRE1) to remove an intron and liberate the 5' and 3' exons. In yeast, the 5' and 3' HAC1 exons are subsequently ligated by tRNA ligase (Rlg1p), whereas XBP1 ligation in mammalian cells is catalysed by a recently identified ligase, RtcB. In the present study, RNA ligase activity of the human RtcB (hRtcB) involved in the unconventional splicing of XBP1/HAC1 mRNA was explored in an rlg1-100 mutant yeast strain. Distinct from Escherichia coli RtcB and Rlg1p, expression of hRtcB alone inefficiently complemented HAC1/XBP1 splicing and the hRtcB cofactor (archease) was required to promote enzymatic activity of hRtcB to catalyse RNA ligation.


Asunto(s)
Ligasas/metabolismo , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Escherichia coli/metabolismo , Exones/genética , Humanos , Intrones/genética , Mamíferos/genética , Mamíferos/fisiología , Empalme del ARN/genética , ARN Mensajero/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
6.
FEBS Lett ; 591(2): 406-414, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28027394

RESUMEN

Inositol-requiring enzyme 1 (IRE1) is a conserved sensor of the unfolded protein response that has protein kinase and endoribonuclease (RNase) enzymatic activities and thereby initiates HAC1/XBP1 splicing. Previous studies demonstrated that human IRE1α (hIRE1α) does not cleave Saccharomyces cerevisiae HAC1 mRNA. Using an in vitro cleavage assay, we show that adenine to cytosine nucleotide substitution at the +1 position in the 3' splice site of HAC1 RNA is required for specific cleavage by hIRE1α. A similar restricted nucleotide specificity in the RNA substrate was observed for XBP1 splicing in vivo. Together these findings underscore the essential role of cytosine nucleotide at +1 in the 3' splice site for determining cleavage specificity of hIRE1α.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada , Animales , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células COS , Chlorocebus aethiops , Citosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Humanos , Conformación de Ácido Nucleico , Nucleótidos/metabolismo , Mutación Puntual/genética , Sitios de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
7.
FEBS Lett ; 584(14): 3203-8, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20541549

RESUMEN

The unfolded protein response is a mechanism to cope with endoplasmic reticulum stress. In Saccharomyces cerevisiae, Ire1 senses the stress and mediates a signaling cascade to upregulate responsive genes through an unusual HAC1 mRNA splicing. The splicing requires interconnected activity (kinase and endoribonuclease (RNase)) of Ire1 to cleave HAC1 mRNA at the non-canonical splice sites before translation into Hac1 transcription factor. Analysis of the truncated kinase domain from Ire1 homologs revealed that this domain is highly conserved. Characterization by domain swapping indicated that a functional ATP/ADP binding domain is minimally required. However the overall domain compatibility is critical for eliciting its full RNase function.


Asunto(s)
Endorribonucleasas/metabolismo , Factores de Transcripción/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Endorribonucleasas/genética , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...