Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Infect ; 86(3): 256-308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646142

RESUMEN

Standard course oseltamivir 75mg two times daily for five days was associated with an 82% reduction of odds of in-patient death (OR 0.18 (0.07,0.51)) compared to no oseltamivir treatment (OR 1.0 Reference) in a final multivariable logistic regression model of a retrospective cohort of PCR confirmed influenza B and influenza A (H3N2) infected patients admitted to a large UK teaching hospital in influenza seasons 2016-17 and 2017-18. No difference of protective odds for standard course oseltamivir was observed between influenza B and influenza A (H3N2) nor between influenza seasons. These observations strongly support clinical guidelines for molecular testing for respiratory viruses on admission to hospital and prompt treatment of confirmed seasonal influenza B and A with oseltamivir 75mg twice daily for five days.


Asunto(s)
Gripe Humana , Oseltamivir , Humanos , Oseltamivir/uso terapéutico , Gripe Humana/diagnóstico , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Subtipo H3N2 del Virus de la Influenza A/genética , Antivirales/uso terapéutico , Estudios Retrospectivos , Mortalidad Hospitalaria , Estaciones del Año , Reacción en Cadena de la Polimerasa
2.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35106603

RESUMEN

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Asunto(s)
COVID-19 , SARS-CoV-2 , Hospitales , Humanos , Pandemias , Estudios Retrospectivos , SARS-CoV-2/genética
3.
Elife ; 102021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34425938

RESUMEN

SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs. Further, the data were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-2 transmission, and sheds light on the need for intensive and pervasive infection control procedures.


The COVID-19 pandemic, caused by the SARS-CoV-2 virus, presents a global public health challenge. Hospitals have been at the forefront of this battle, treating large numbers of sick patients over several waves of infection. Finding ways to manage the spread of the virus in hospitals is key to protecting vulnerable patients and workers, while keeping hospitals running, but to generate effective infection control, researchers must understand how SARS-CoV-2 spreads. A range of factors make studying the transmission of SARS-CoV-2 in hospitals tricky. For instance, some people do not present any symptoms, and, amongst those who do, it can be difficult to determine whether they caught the virus in the hospital or somewhere else. However, comparing the genetic information of the SARS-CoV-2 virus from different people in a hospital could allow scientists to understand how it spreads. Samples of the genetic material of SARS-CoV-2 can be obtained by swabbing infected individuals. If the genetic sequences of two samples are very different, it is unlikely that the individuals who provided the samples transmitted the virus to one another. Illingworth, Hamilton et al. used this information, along with other data about how SARS-CoV-2 is transmitted, to develop an algorithm that can determine how the virus spreads from person to person in different hospital wards. To build their algorithm, Illingworth, Hamilton et al. collected SARS-CoV-2 genetic data from patients and staff in a hospital, and combined it with information about how SARS-CoV-2 spreads and how these people moved in the hospital . The algorithm showed that, for the most part, patients were infected by other patients (20 out of 22 cases), while staff were infected equally by patients and staff. By further probing these data, Illingworth, Hamilton et al. revealed that 80% of hospital-acquired infections were caused by a group of just 21% of individuals in the study, identifying a 'superspreader' pattern. These findings may help to inform SARS-CoV-2 infection control measures to reduce spread within hospitals, and could potentially be used to improve infection control in other contexts.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Brotes de Enfermedades/estadística & datos numéricos , Hospitales/estadística & datos numéricos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
4.
Lancet Infect Dis ; 20(11): 1263-1272, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32679081

RESUMEN

BACKGROUND: The burden and influence of health-care associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is unknown. We aimed to examine the use of rapid SARS-CoV-2 sequencing combined with detailed epidemiological analysis to investigate health-care associated SARS-CoV-2 infections and inform infection control measures. METHODS: In this prospective surveillance study, we set up rapid SARS-CoV-2 nanopore sequencing from PCR-positive diagnostic samples collected from our hospital (Cambridge, UK) and a random selection from hospitals in the East of England, enabling sample-to-sequence in less than 24 h. We established a weekly review and reporting system with integration of genomic and epidemiological data to investigate suspected health-care associated COVID-19 cases. FINDINGS: Between March 13 and April 24, 2020, we collected clinical data and samples from 5613 patients with COVID-19 from across the East of England. We sequenced 1000 samples producing 747 high-quality genomes. We combined epidemiological and genomic analysis of the 299 patients from our hospital and identified 35 clusters of identical viruses involving 159 patients. 92 (58%) of 159 patients had strong epidemiological links and 32 (20%) patients had plausible epidemiological links. These results were fed back to clinical, infection control, and hospital management teams, leading to infection-control interventions and informing patient safety reporting. INTERPRETATION: We established real-time genomic surveillance of SARS-CoV-2 in a UK hospital and showed the benefit of combined genomic and epidemiological analysis for the investigation of health-care associated COVID-19. This approach enabled us to detect cryptic transmission events and identify opportunities to target infection-control interventions to further reduce health-care associated infections. Our findings have important implications for national public health policy as they enable rapid tracking and investigation of infections in hospital and community settings. FUNDING: COVID-19 Genomics UK funded by the Department of Health and Social Care, UK Research and Innovation, and the Wellcome Sanger Institute.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Control de Infecciones/métodos , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/virología , Infección Hospitalaria/virología , Inglaterra/epidemiología , Femenino , Genoma Viral/genética , Hospitales Universitarios , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Filogenia , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , SARS-CoV-2 , Secuenciación Completa del Genoma/métodos , Adulto Joven
5.
Wellcome Open Res ; 3: 118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30569021

RESUMEN

Background: Human parainfluenza viruses type 3 (HPIV3) are a prominent cause of respiratory infection with a significant impact in both pediatric and transplant patient cohorts.  Currently there is a paucity of whole genome sequence data that would allow for detailed epidemiological and phylogenetic analysis of circulating strains in the UK. Although it is known that HPIV3 peaks annually in the UK, to date there are no whole genome sequences of HPIV3 UK strains available.  Methods: Clinical strains were obtained from HPIV3 positive respiratory patient samples collected between 2011 and 2015.  These were then amplified using an amplicon based method, sequenced on the Illumina platform and assembled using a new robust bioinformatics pipeline. Phylogenetic analysis was carried out in the context of other epidemiological studies and whole genome sequence data currently available with stringent exclusion of significantly culture-adapted strains of HPIV3. Results: In the current paper we have presented twenty full genome sequences of UK circulating strains of HPIV3 and a detailed phylogenetic analysis thereof.  We have analysed the variability along the HPIV3 genome and identified a short hypervariable region in the non-coding segment between the M (matrix) and F (fusion) genes. The epidemiological classifications obtained by using this region and whole genome data were then compared and found to be identical. Conclusions: The majority of HPIV3 strains were observed at different geographical locations and with a wide temporal spread, reflecting the global distribution of HPIV3. Consistent with previous data, a particular subcluster or strain was not identified as specific to the UK, suggesting that a number of genetically diverse strains circulate at any one time. A small hypervariable region in the HPIV3 genome was identified and it was shown that, in the absence of full genome data, this region could be used for epidemiological surveillance of HPIV3.

6.
Wellcome Open Res ; 3: 119, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687791

RESUMEN

Background: Human parainfluenza viruses (HPIVs) are significant causes of both upper and lower respiratory tract infections with type 3 (HPIV3) causing the most severe disease in the immunocompromised cohorts.  The objective of this study was to analyse the epidemiological nature of a cluster of cases of HPIV3 in a pediatric oncology unit of a major teaching hospital. Methods: In order to determine whether the activity observed represented a deviation from the norm, seasonal trends of HPIV3 in the surrounding geographical area as well as on the ward in question were analysed.  The genetic link between cases was established by the phylogenetic analysis of the non-coding hypervariable region between the M (Matrix) and F (fusion) genes of HPIV3. The 15 cases involved and 15 unrelated cases were sequenced.  Transmission routes were subsequently inferred and visualized using Konstanz Information Miner (KNIME) 3.3.2. Results: Of the 15 cases identified, 14 were attributed to a point source outbreak. Two out of 14 outbreak cases were found to differ by a single mutation A182C. The outbreak strain was also seen in 1 out of 15 unrelated cases, indicating that it was introduced from the community. Transmission modeling was not able to link all the cases and establish a conclusive chain of transmission. No staff were tested during the outbreak period. No deaths occurred as a result of the outbreak. Conclusion: A point source outbreak of HPIV3 was recognized post factum on an oncology pediatric unit in a major teaching hospital. This raised concern about the possibility of a future more serious outbreak. Weaknesses in existing systems were identified and a new dedicated respiratory virus monitoring system introduced.  Pediatric oncology units require sophisticated systems for early identification of potentially life-threatening viral outbreaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...