Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 12: 779962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867411

RESUMEN

Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.

2.
Curr Alzheimer Res ; 18(8): 607-622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34551697

RESUMEN

BACKGROUND: Prolactin-releasing peptide (PrRP) is a potential drug for the treatment of obesity and associated Type 2 Diabetes Mellitus (T2DM) due to its strong anorexigenic and antidiabetic properties. In our recent study, the lipidized PrRP analog palm11-PrRP31 was proven to exert beneficial effects in APP/PS1 mice, a model of Alzheimer´s Disease (AD)-like amyloid-ß (Aß) pathology, reducing the Aß plaque load, microgliosis and astrocytosis in the hippocampus and cortex. OBJECTIVE: In this study, we focused on the neuroprotective and anti-inflammatory effects of palm11-PrRP31 and its possible impact on synaptogenesis in the cerebellum of APP/PS1 mice, because others have suggested that cerebellar Aß plaques contribute to cognitive deficits in AD. METHODS: APP/PS1 mice were treated subcutaneously with palm11-PrRP31 for 2 months, then immunoblotting and immunohistochemistry were used to quantify pathological markers connected to AD, compared to control mice. RESULTS: In the cerebella of 8 months old APP/PS1 mice, we found widespread Aß plaques surrounded by activated microglia detected by ionized calcium-binding adapter molecule (Iba1), but no increase in astrocytic marker Glial Fibrillary Acidic Protein (GFAP) compared to controls. Interestingly, no difference in both presynaptic markers syntaxin1A and postsynaptic marker spinophilin was registered between APP/PS1 and control mice. Palm11-PrRP31 treatment significantly reduced the Aß plaque load and microgliosis in the cerebellum. Furthermore, palm11-PrRP31 increased synaptogenesis and attenuated neuroinflammation and apoptosis in the hippocampus of APP/PS1 mice. CONCLUSION: These results suggest palm11-PrRP31 is a promising agent for the treatment of neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cerebelo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide/patología , Presenilina-1/genética , Presenilina-1/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Hormona Liberadora de Prolactina/farmacología
3.
J Neuroinflammation ; 18(1): 141, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158075

RESUMEN

BACKGROUND: Obesity leads to low-grade inflammation in the adipose tissue and liver and neuroinflammation in the brain. Obesity-induced insulin resistance (IR) and neuroinflammation seem to intensify neurodegeneration including Alzheimer's disease. In this study, the impact of high-fat (HF) diet-induced obesity on potential neuroinflammation and peripheral IR was tested separately in males and females of THY-Tau22 mice, a model of tau pathology expressing mutated human tau protein. METHODS: Three-, 7-, and 11-month-old THY-Tau22 and wild-type males and females were tested for mobility, anxiety-like behavior, and short-term spatial memory in open-field and Y-maze tests. Plasma insulin, free fatty acid, cholesterol, and leptin were evaluated with commercial assays. Liver was stained with hematoxylin and eosin for histology. Brain sections were 3',3'-diaminobenzidine (DAB) and/or fluorescently detected for ionized calcium-binding adapter molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and tau phosphorylated at T231 (pTau (T231)), and analyzed. Insulin signaling cascade, pTau, extracellular signal-regulated kinase 1/2 (ERK1/2), and protein phosphatase 2A (PP2A) were quantified by western blotting of hippocampi of 11-month-old mice. Data are mean ± SEM and were subjected to Mann-Whitney t test within age and sex and mixed-effects analysis and Bonferroni's post hoc test for age comparison. RESULTS: Increased age most potently decreased mobility and increased anxiety in all mice. THY-Tau22 males showed impaired short-term spatial memory. HF diet increased body, fat, and liver weights and peripheral IR. HF diet-fed THY-Tau22 males showed massive Iba1+ microgliosis and GFAP+ astrocytosis in the hippocampus and amygdala. Activated astrocytes colocalized with pTau (T231) in THY-Tau22, although no significant difference in hippocampal tau phosphorylation was observed between 11-month-old HF and standard diet-fed THY-Tau22 mice. Eleven-month-old THY-Tau22 females, but not males, on both diets showed decreased synaptic and postsynaptic plasticity. CONCLUSIONS: Significant sex differences in neurodegenerative signs were found in THY-Tau22. Impaired short-term spatial memory was observed in 11-month-old THY-tau22 males but not females, which corresponded to increased neuroinflammation colocalized with pTau(T231) in the hippocampi and amygdalae of THY-Tau22 males. A robust decrease in synaptic and postsynaptic plasticity was observed in 11-month-old females but not males. HF diet caused peripheral but not central IR in mice of both sexes.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Obesidad/complicaciones , Tauopatías/complicaciones , Animales , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Hipocampo/metabolismo , Inflamación , Masculino , Memoria a Corto Plazo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Limitación de la Movilidad , Obesidad/etiología , Fosforilación , Factores Sexuales , Tauopatías/genética , Proteínas tau
4.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882929

RESUMEN

Prolactin-releasing peptide (PrRP), a natural ligand for the GPR10 receptor, is a neuropeptide with anorexigenic and antidiabetic properties. Due to its role in the regulation of food intake, PrRP is a potential drug for obesity treatment and associated type 2 diabetes mellitus (T2DM). Recently, the neuroprotective effects of lipidized PrRP analogs have been proven. In this study, we focused on the molecular mechanisms of action of natural PrRP31 and its lipidized analog palm11-PrRP31 in the human neuroblastoma cell line SH-SY5Y to describe their cellular signaling and possible anti-apoptotic properties. PrRP31 significantly upregulated the phosphoinositide-3 kinase-protein kinase B/Akt (PI3K-PKB/Akt) and extracellular signal-regulated kinase/cAMP response element-binding protein (ERK-CREB) signaling pathways that promote metabolic cell survival and growth. In addition, we proved via protein kinase inhibitors that activation of signaling pathways is mediated specifically by PrRP31 and its palmitoylated analog. Furthermore, the potential neuroprotective properties were studied through activation of anti-apoptotic pathways of PrRP31 and palm11-PrRP31 using the SH-SY5Y cell line and rat primary neuronal culture stressed with toxic methylglyoxal (MG). The results indicate increased viability of the cells treated with PrRP and palm11-PrRP31 and a reduced degree of apoptosis induced by MG, suggesting their potential use in the treatment of neurological disorders.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Neuroblastoma/tratamiento farmacológico , Neuropéptidos/farmacología , Fármacos Neuroprotectores/farmacología , Hormona Liberadora de Prolactina/farmacología , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuropéptidos/química , Fármacos Neuroprotectores/química , Hormona Liberadora de Prolactina/química , Transducción de Señal , Células Tumorales Cultivadas
5.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653061

RESUMEN

Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.


Asunto(s)
Hormona Liberadora de Prolactina/metabolismo , Animales , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hormona Liberadora de Prolactina/química , Hormona Liberadora de Prolactina/farmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
6.
Talanta ; 201: 364-372, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31122436

RESUMEN

The selection of a suitable matrix and deposition technique constitutes a critical step in successful matrix-assisted laser desorption/ionization mass spectrometry imaging measurement. In the present work, we compared three techniques of matrix deposition, specifically, sublimation and spraying of 1,5-diaminonaphthalene with two automatic sprayers, ImagePrep and iMatrixSpray. The studied methods were evaluated in experiments for the analysis of lipid composition in the brains of two mouse models of neurodegeneration: APP/PS1 mice with plaques of amyloid ß (Aß) peptides and THY-Tau22 mice with pathologically hyperphosphorylated Tau protein, two hallmarks of Alzheimer's disease-like pathology. The sublimation method provided irreproducible results because of significant matrix loss due to the high vacuum in the ion source and laser irradiation. In contrast, the ImagePrep and iMatrixSpray provided stable film of the matrix. The deposited matrix was stable during the measurement, and highly reproducible datasets were obtained. Both spraying methods yielded similar results with approximately the same number of detected lipids and comparable signal intensity. However, iMatrixSpray has two main advantages: a faster matrix deposition and the formation of smaller matrix crystals leading to better spatial resolution. In the APP/PS1 mouse model at an age of 6 months, we found colocalization of Aß plaques with different phospholipids, sphingolipids and lysophospholipids. We did not find a difference in lipid composition between the THY-Tau22 mice and the wild-type controls. The results indicate that hyperphosphorylation of tau protein in the THY-Tau22 mouse model at the age of 6 months is not accompanied with a significant change in lipid content in the brain. However, considering limitations of the used method, a definitive conclusion in this respect will need further research.


Asunto(s)
2-Naftilamina/análogos & derivados , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Gangliósidos/análisis , Glicerofosfolípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , 2-Naftilamina/química , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Gangliósidos/metabolismo , Glicerofosfolípidos/metabolismo , Masculino , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Proteínas tau/metabolismo
7.
J Endocrinol ; 240(2): R47-R72, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475219

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Metabolismo Energético/efectos de los fármacos , Leptina/metabolismo , Oligopéptidos/farmacología , Ácido Pirrolidona Carboxílico/análogos & derivados , Enfermedad de Alzheimer/metabolismo , Animales , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Humanos , Fármacos Neuroprotectores/farmacología , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Ácido Pirrolidona Carboxílico/farmacología
8.
Neuropharmacology ; 144: 377-387, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30428311

RESUMEN

Obesity and type 2 diabetes mellitus (T2DM) are important risk factors for Alzheimer's disease (AD). Drugs originally developed for T2DM treatment, e.g., analog of glucagon-like peptide 1 liraglutide, have shown neuroprotective effects in mouse models of AD. We previously examined the neuroprotective properties of palm11-PrRP31, an anorexigenic and glucose-lowering analog of prolactin-releasing peptide, in a mouse model of AD-like Tau pathology, THY-Tau22 mice. Here, we demonstrate the neuroprotective effects of palm11-PrRP31 in double transgenic APP/PS1 mice, a model of AD-like ß-amyloid (Aß) pathology. The 7-8-month-old APP/PS1 male mice were subcutaneously injected with liraglutide or palm11-PrRP31 for 2 months. Both the liraglutide and palm11-PrRP31 treatments reduced the Aß plaque load in the hippocampus. Palm11-PrRP31 also significantly reduced hippocampal microgliosis, consistent with our observations of a reduced Aß plaque load, and reduced cortical astrocytosis, similar to the treatment with liraglutide. Palm11-PrRP31 also tended to increase neurogenesis, as indicated by the number of doublecortin-positive cells in the hippocampus. After the treatment with both anorexigenic compounds, we observed a significant decrease in Tau phosphorylation at Thr231, one of the first epitopes phosphorylated in AD. This effect was probably caused by elevated activity of protein phosphatase 2A subunit C, the main Tau phosphatase. Both liraglutide and palm11-PrRP31 reduced the levels of caspase 3, which has multiple roles in the pathogenesis of AD. Palm11-PrRP31 increased protein levels of the pre-synaptic marker synaptophysin, suggesting that palm11-PrRP31 might help preserve synapses. These results indicate that palm11-PrRP31 has promising potential for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amiloidosis/tratamiento farmacológico , Liraglutida/farmacología , Fármacos Neuroprotectores/farmacología , Placa Amiloide/tratamiento farmacológico , Hormona Liberadora de Prolactina/análogos & derivados , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Modelos Animales de Enfermedad , Gliosis/tratamiento farmacológico , Gliosis/metabolismo , Gliosis/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/efectos de los fármacos , Placa Amiloide/metabolismo , Placa Amiloide/patología , Distribución Aleatoria , Proteínas tau/metabolismo
9.
J Alzheimers Dis ; 62(4): 1725-1736, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29614684

RESUMEN

Obesity and type 2 diabetes mellitus (T2DM) were characterized as risk factors for Alzheimer's disease (AD) development. Subsequently, T2DM drugs, such as liraglutide, were proven to be neuroprotective compounds attenuating levels of amyloid deposits, and tau hyperphosphorylation, both hallmarks of AD. The central anorexigenic effects of liraglutide inspired us to examine the potential neuroprotective effects of palm11-PrRP31, a strong anorexigenic analog with glucose-lowering properties, in THY-Tau22 mice overexpressing mutated human tau, a model of AD-like tau pathology. Seven-month-old THY-Tau22 mice were subcutaneously infused with palm11-PrRP31 for 2 months. Spatial memory was tested before and after the treatment, using a Y-maze. At the end of the treatment, mice were sacrificed by decapitation and hippocampi were dissected and analyzed by immunoblotting with specific antibodies. Treatment with palm11-PrRP31 resulted in significantly improved spatial memory. In the hippocampi of palm11-PrRP31-treated THY-Tau22 mice, tau protein phosphorylation was attenuated at Thr231, Ser396, and Ser404, the epitopes linked to AD progression. The mechanism of this attenuation remains unclear, since the activation of those kinases most implicated in tau hyperphosphorylation, such as GSK-3ß, JNK, or MAPK/ERK1/2, remained unchanged by palm11-PrRP31 treatment. Furthermore, we observed a significant increase in the amount of postsynaptic density protein PSD95, and a non-significant increase of synaptophysin, both markers of increased synaptic plasticity, which could also result in improved spatial memory of THY-Tau22 mice treated with palm11-PrRP31. Palm11-PrRP31 seems to be a potential tool for the attenuation of neurodegenerative disorders in the brain. However, the exact mechanism of its action must be elucidated.


Asunto(s)
Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Hormona Liberadora de Prolactina/análogos & derivados , Tauopatías/tratamiento farmacológico , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/uso terapéutico , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/psicología
10.
PLoS One ; 12(8): e0183449, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28820912

RESUMEN

Analogs of anorexigenic neuropeptides, such as prolactin-releasing peptide (PrRP), have a potential as new anti-obesity drugs. In our previous study, palmitic acid attached to the N-terminus of PrRP enabled its central anorexigenic effects after peripheral administration. In this study, two linkers, γ-glutamic acid at Lys11 and a short, modified polyethylene glycol at the N-terminal Ser and/or Lys11, were applied for the palmitoylation of PrRP31 to improve its bioavailability. These analogs had a high affinity and activation ability to the PrRP receptor GPR10 and the neuropeptide FF2 receptor, as well as short-term anorexigenic effect similar to PrRP palmitoylated at the N-terminus. Two-week treatment with analogs that were palmitoylated through linkers to Lys11 (analogs 1 and 2), but not with analog modified both at the N-terminus and Lys11 (analog 3) decreased body and liver weights, insulin, leptin, triglyceride, cholesterol and free fatty acid plasma levels in a mouse model of diet-induced obesity. Moreover, the expression of uncoupling protein-1 was increased in brown fat suggesting an increase in energy expenditure. In addition, treatment with analogs 1 and 2 but not analog 3 significantly decreased urinary concentrations of 1-methylnicotinamide and its oxidation products N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-3-carboxamide, as shown by NMR-based metabolomics. This observation confirmed the previously reported increase in nicotinamide derivatives in obesity and type 2 diabetes mellitus and the effectiveness of analogs 1 and 2 in the treatment of these disorders.


Asunto(s)
Dieta , Obesidad/metabolismo , Péptidos/farmacología , Hormona Liberadora de Prolactina/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Células CHO , Cricetinae , Cricetulus , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Resonancia Magnética Nuclear Biomolecular , Obesidad/etiología , Péptidos/química , Hormona Liberadora de Prolactina/química , beta-Lactamasas/metabolismo
11.
J Endocrinol ; 230(2): R51-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27418033

RESUMEN

Obesity is an escalating epidemic, but an effective noninvasive therapy is still scarce. For obesity treatment, anorexigenic neuropeptides are promising tools, but their delivery from the periphery to the brain is complicated because peptides have a low stability and limited ability to cross the blood-brain barrier. In this review, we summarize results of several studies with our newly designed lipidized analogs of prolactin-releasing peptide (PrRP). PrRP is involved in feeding and energy balance regulation as demonstrated by obesity phenotypes of both PrRP- and PrRP-receptor-knockout mice. Lipidized PrRP analogs showed binding affinity and signaling in PrRP receptor-expressing cells similar to natural PrRP. Moreover, these analogs showed high binding affinity also to anorexigenic neuropeptide FF (NPFF)-2 receptor. Acute peripheral administration of myristoylated and palmitoylated PrRP analogs to mice and rats induced strong and long-lasting anorexigenic effects and neuronal activation in the brain areas involved in food intake regulation. Two-week-long subcutaneous administration of palmitoylated PrRP31 and myristoylated PrRP20 lowered food intake, body weight, improved metabolic parameters and attenuated lipogenesis in mice with diet-induced obesity. A strong anorexigenic, body weight-reducing and glucose tolerance-improving effect of palmitoylated-PrRP31 was shown also in diet-induced obese rats after its repeated 2-week-long peripheral administration. Thus, the strong anorexigenic and body weight-reducing effects of palmitoylated PrRP31 and myristoylated PrRP20 make these analogs attractive candidates for antiobesity treatment. Moreover, PrRP receptor might be a new target for obesity therapy.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Regulación del Apetito , Sistemas de Liberación de Medicamentos , Obesidad/tratamiento farmacológico , Hormona Liberadora de Prolactina/uso terapéutico , Animales , Fármacos Antiobesidad/farmacología , Humanos , Hormona Liberadora de Prolactina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...