Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Development ; 147(12)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32467237

RESUMEN

Thymus function depends on the epithelial compartment of the thymic stroma. Cortical thymic epithelial cells (cTECs) regulate T cell lineage commitment and positive selection, while medullary (m) TECs impose central tolerance on the T cell repertoire. During thymus organogenesis, these functionally distinct sub-lineages are thought to arise from a common thymic epithelial progenitor cell (TEPC). However, the mechanisms controlling cTEC and mTEC production from the common TEPC are not understood. Here, we show that emergence of the earliest mTEC lineage-restricted progenitors requires active NOTCH signaling in progenitor TEC and that, once specified, further mTEC development is NOTCH independent. In addition, we demonstrate that persistent NOTCH activity favors maintenance of undifferentiated TEPCs at the expense of cTEC differentiation. Finally, we uncover a cross-regulatory relationship between NOTCH and FOXN1, a master regulator of TEC differentiation. These data establish NOTCH as a potent regulator of TEPC and mTEC fate during fetal thymus development, and are thus of high relevance to strategies aimed at generating/regenerating functional thymic tissue in vitro and in vivo.


Asunto(s)
Desarrollo Embrionario/genética , Receptores Notch/metabolismo , Timo/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Mutación con Ganancia de Función , Regulación del Desarrollo de la Expresión Génica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Organogénesis , Receptores Notch/genética , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Timo/citología , Timo/crecimiento & desarrollo
2.
PLoS Biol ; 17(6): e3000297, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31199786

RESUMEN

Posttranscriptional modifications in transfer RNA (tRNA) are often critical for normal development because they adapt protein synthesis rates to a dynamically changing microenvironment. However, the precise cellular mechanisms linking the extrinsic stimulus to the intrinsic RNA modification pathways remain largely unclear. Here, we identified the cytosine-5 RNA methyltransferase NSUN2 as a sensor for external stress stimuli. Exposure to oxidative stress efficiently repressed NSUN2, causing a reduction of methylation at specific tRNA sites. Using metabolic profiling, we showed that loss of tRNA methylation captured cells in a distinct catabolic state. Mechanistically, loss of NSUN2 altered the biogenesis of tRNA-derived noncoding fragments (tRFs) in response to stress, leading to impaired regulation of protein synthesis. The intracellular accumulation of a specific subset of tRFs correlated with the dynamic repression of global protein synthesis. Finally, NSUN2-driven RNA methylation was functionally required to adapt cell cycle progression to the early stress response. In summary, we revealed that changes in tRNA methylation profiles were sufficient to specify cellular metabolic states and efficiently adapt protein synthesis rates to cell stress.


Asunto(s)
ADN-Citosina Metilasas/metabolismo , Metiltransferasas/metabolismo , Animales , Línea Celular , Citosina/metabolismo , Metilación de ADN/fisiología , ADN-Citosina Metilasas/fisiología , Humanos , Ratones , Estrés Oxidativo/fisiología , Biosíntesis de Proteínas/fisiología , ARN/metabolismo , ARN de Transferencia/metabolismo
3.
BMC Res Notes ; 11(1): 67, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29361972

RESUMEN

OBJECTIVE: This study was designed to estimate the percentage of non-malignant skin tumours (papillomas) progressing to malignant squamous cell carcinomas (SCCs) in a carcinogenesis study using established transgenic mouse models. In our skin cancer model, we conditionally induced oncogenic point mutant alleles of p53 and k-ras in undifferentiated, basal cells of the epidermis. RESULTS: Upon activation of the transgenes through administration of tamoxifen, the vast majority of mice (> 80%) developed skin papillomas, yet primarily around the mouth. Since these tumours hindered the mice eating, they rapidly lost weight and needed to be culled before the papillomas progressed to SCCs. The mouth papillomas formed regardless of the route of application, including intraperitoneal injections, local application to the back skin, or subcutaneous insertion of a tamoxifen pellet. Implantation of a slow releasing tamoxifen pellet into 18 mice consistently led to papilloma formation, of which only one progressed to a malignant SCC. Thus, the challenges for skin carcinogenesis studies using this particular cancer mouse model are low conversion rates of papillomas to SCCs and high frequencies of mouth papilloma formation.


Asunto(s)
Carcinoma de Células Escamosas/patología , Papiloma/patología , Neoplasias Cutáneas/patología , Piel/patología , Animales , Carcinoma de Células Escamosas/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes ras/genética , Ratones Transgénicos , Papiloma/genética , Piel/efectos de los fármacos , Piel/metabolismo , Neoplasias Cutáneas/genética , Tamoxifeno/administración & dosificación , Proteína p53 Supresora de Tumor/genética
4.
Nature ; 534(7607): 335-40, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27306184

RESUMEN

Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour.


Asunto(s)
Biosíntesis de Proteínas , Células Madre/fisiología , Estrés Fisiológico , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Citosina/metabolismo , Femenino , Fluorouracilo/farmacología , Folículo Piloso/citología , Folículo Piloso/metabolismo , Humanos , Masculino , Metilación , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Regeneración , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Células Madre/citología , Estrés Fisiológico/genética
5.
Curr Opin Oncol ; 28(1): 65-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26599292

RESUMEN

PURPOSE OF REVIEW: Significant advances have been made in understanding the functional roles of evolutionarily conserved chemical modifications in RNA. By focusing on cytosine-5 methylation, we will highlight the latest insight into the mechanisms how posttranscriptional methylation contributes to cell fate decisions, with implications for cancer development. RECENT FINDINGS: Several mutations in RNA-modifying enzymes have been identified to cause complex human diseases, and linked posttranscriptional modifications to fundamental cellular processes. Distinct posttranscriptional modifications are implicated in the regulation of stem cell maintenance and cellular differentiation. The dynamic deposition of a methyl mark into noncoding RNAs modulates the adaptive cellular responses to stress and alterations of methylation levels may lead to cancer. SUMMARY: Posttranscriptional modifications such as cytosine-5 methylation are dynamically regulated and may influence tumour development, maintenance, and progression.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico/metabolismo , Estrés Fisiológico/genética , Diferenciación Celular , Citidina/análogos & derivados , Citidina/metabolismo , Citosina/metabolismo , Humanos , Metilación , Metiltransferasas/metabolismo , Neoplasias/patología , ARN Ribosómico/genética
6.
EMBO J ; 33(18): 2020-39, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25063673

RESUMEN

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage.


Asunto(s)
Regulación de la Expresión Génica , Metiltransferasas/metabolismo , Enfermedades del Sistema Nervioso/congénito , Enfermedades del Sistema Nervioso/patología , ARN de Transferencia/metabolismo , Animales , Encéfalo/patología , Perfilación de la Expresión Génica , Humanos , Metilación , Metiltransferasas/genética , Ratones , Estrés Oxidativo , Ribonucleasa Pancreática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...