RESUMEN
RATIONALE: Despite decades of implementation, the selection of optimal sample preparation conditions for matrix-assisted laser desorption/ionization (MALDI) imaging is still ambiguous due to the lack of a universal and comprehensive evaluation methodology. Thus, numerous experiments with different matrix application conditions accompany a translation of the method to novel sample types and matrices. METHODS: Mouse brain tissues were covered with 9-aminoacridine through sublimation, followed by recrystallization in vapors of 5% (v/v) methanol solution in water. The samples were analyzed by MALDI time-of-flight mass spectrometry, and the efficiency of lipid and small-molecule ionization was evaluated with different metrics. RESULTS: We first investigate the dependency of matrix density and recrystallization conditions on the thickness of an analyte-empty matrix layer to roughly evaluate the laser shot number required to obtain an intense signal with minimal noise. Then, we introduce metrics for the analysis of small imaging datasets (small sample regions) of model samples based on median quantity of peaks in spectra (medQP) and weighted median signal-to-noise ratio (wmSNR). The evaluation of small regions and taking median values for metrics help overcome the sample heterogeneity and allow for the simultaneous comparison of different acquisition parameters. CONCLUSIONS: Here, we propose a methodology based on gradual laser ablation of small regions of sample and further implementation of weighted signal-to-noise ratio to assess various matrix application conditions. The proposed approach helps reduce the number of test samples required to determine optimal sample preparation conditions and improve the overall quality of images.
RESUMEN
Ambient ionization mass spectrometry was proved to be a powerful tool for oncological surgery. Still, it remains a translational technique on the way from laboratory to clinic. Brain surgery is the most sensitive to resection accuracy field since the balance between completeness of resection and minimization of nerve fiber damage determines patient outcome and quality of life. In this review, we summarize efforts made to develop various intraoperative support techniques for oncological neurosurgery and discuss difficulties arising on the way to clinical implementation of mass spectrometry-guided brain surgery.
RESUMEN
This article provides a comprehensive overview of the applications of methods of machine learning (ML) and artificial intelligence (AI) in ambient ionization mass spectrometry (AIMS). AIMS has emerged as a powerful analytical tool in recent years, allowing for rapid and sensitive analysis of various samples without the need for extensive sample preparation. The integration of ML/AI algorithms with AIMS has further expanded its capabilities, enabling enhanced data analysis. This review discusses ML/AI algorithms applicable to the AIMS data and highlights the key advancements and potential benefits of utilizing ML/AI in the field of mass spectrometry, with a focus on the AIMS community.
RESUMEN
Hepatobiliary system cancers have demonstrated an increasing incidence rate in the past years. Without the presence of early symptoms, the majority of such cancers manifest with a set of similar symptoms, such as cholestasis resulting in posthepatic icterus. Differential diagnosis of hepatobiliary cancers is required for the therapy selection, however, the similarity of the symptoms complicates diagnostics. Thus, the search for molecular markers is of high interest for such patients. Cholangiocarcinoma (CCA) is characterized by a poor prognosis due to a low resectability rate, which occurs because this disease is frequently beyond the limits of surgical therapy at the time of diagnosis. The CCA is diagnosed by the combination of clinical/biochemical features, radiological methods, and non-specific serum tumor biomarkers, although invasive examination is still needed. The main disadvantage is limited specificity and sensitivity, which complicates early diagnostics. Therefore, prognostic and predictive biomarkers are still lacking and urgently needed for early diagnosis. In contrast to serum, bile is more accessible to identify biliary disease due to its simpler composition. Moreover, bile can contain higher concentrations of tumor biomarkers due to its direct contact with the tumor. It is known that the composition of the main bile component - bile acids, may vary during different diseases of the biliary tract. This review summarizes the recent developments in the current research on the diagnostic biomarkers for CCA in serum and bile and provides an overview of the methods of bile acids analysis.
Asunto(s)
Neoplasias de los Conductos Biliares , Bilis , Biomarcadores de Tumor , Colangiocarcinoma , Humanos , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/patología , Bilis/química , Bilis/metabolismo , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/análisisRESUMEN
Amyloid-ß (Aß) is a peptide formed by 39-43 amino acids, heterogenous by the length of its C-terminus. Aß constitutes a subnanomolar monomeric component of human biological fluids; however, in sporadic variants of Alzheimer's disease (AD), it forms soluble neurotoxic oligomers and accumulates as insoluble extracellular polymeric aggregates (amyloid plaques) in the brain tissues. The plaque formation is controlled by zinc ions; therefore, abnormal interactions between the ions and Aß seem to take part in the triggering of sporadic AD. The amyloid plaques contain various Aß isoforms, among which the most common is Aß with an isoaspartate in position 7 (isoD7). The spontaneous conversion of D7 to isoD7 is associated with Aß aging. Aß molecules with isoD7 (isoD7-Aß) easily undergo zinc-dependent oligomerization, and upon administration to transgenic animals (mice, nematodes) used for AD modeling, act as zinc-dependent seeds of the pathological aggregation of Aß. The formation of zinc-bound homo- and hetero-oligomers with the participation of isoD7-Aß is based on the rigidly structured segment 11-EVHH-14, located in the Aß metal binding domain (Aß16). Some hereditary variants of AD are associated with familial mutations within the domain. Among these, the most susceptible to zinc-dependent oligomerization is Aß with Taiwan (D7H) mutation (D7H-Aß). In this study, the D7H-Aß metal binding domain (D7H-Aß16) has been used as a model to establish the molecular mechanism of zinc-induced D7H-Aß oligomerization through turbidimetry, dynamic light scattering, isothermal titration calorimetry, mass spectrometry, and computer modelling. Additionally, the modeling data showed that a molecule of D7H-Aß, as well as isoD7-Aß in combination with two Aß molecules, renders a stable zinc-induced heterotrimer. The trimers are held together by intermolecular interfaces via zinc ions, with the primary interfaces formed by 11-EVHH-14 sites of the interacting trimer subunits. In summary, the obtained results confirm the role of the 11-EVHH-14 region as a structure and function determinant for the zinc-dependent oligomerization of all known Aß species (including various chemically modified isoforms and AD-associated mutants) and point at this region as a potent target for drugs aimed to stop amyloid plaque formation in both sporadic and hereditary variants of AD.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Zinc/metabolismo , Taiwán , Placa Amiloide , Péptidos beta-Amiloides/metabolismo , Isoformas de Proteínas/genética , Mutación , IonesRESUMEN
Rapid and reliable methods for detecting tumor margins are crucial for neuro-oncology. Several mass spectrometry-based methods have been recently proposed to address this problem. Inline Cartridge Extraction (ICE) demonstrates the potential for clinical application, based on ex-vivo analysis of dissected tissues, but requires time-consuming steps to avoid cross-contamination. In this work, a method of incorporating a disposable electrospray emitter into the ICE cartridge by PEEK sleeves melting is developed. It reduces total analysis time and improves throughput. The proposed setup also improves the robustness of the ICE molecular profiling as demonstrated with human glial tumor samples in that stability and reproducibility of the spectra were increased.
Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Reproducibilidad de los ResultadosRESUMEN
The study of the molecular mechanisms of the pathogenesis of Alzheimer's disease (AD) is extremely important for identifying potential therapeutic targets as well as early markers. In this regard, the study of the role of post-translational modifications (PTMs) of ß-amyloid (Aß) peptides is of particular relevance. Serine-8 phosphorylated forms (pSer8-Aß) have been shown to have an increased aggregation capacity and may reflect the severity of amyloidosis. Here, an approach for quantitative assessment of pSer8-Aß based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is proposed. The relative fraction of pSer8-Aß was estimated in the total Aß-pool with a detection limit of 1 fmol for pSer8-Aß (1-16) and an accuracy of 2% for measurements in the reflectron mode. The sensitivity of the developed method is suitable for determining the proportion of phosphorylated peptides in biological samples.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/análisis , Serina , Enfermedad de Alzheimer/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
Ex-vivo molecular profiling has recently emerged as a promising method for intraoperative tissue identification, especially in neurosurgery. The short-term storage of resected samples at room temperature is proposed to have negligible influence on the lipid molecular profiles. However, a detailed investigation of short-term molecular profile stability is required to implement molecular profiling in a clinic. This study evaluates the effect of storage media, temperature, and washing solution to determine conditions that provide stable and reproducible molecular profiles, with the help of ambient ionization mass spectrometry using rat cerebral cortex as model brain tissue samples. Utilizing normal saline for sample storage and washing media shows a positive effect on the reproducibility of the spectra; however, the refrigeration shows a negligible effect on the spectral similarity. Thus, it was demonstrated that up to hour-long storage in normal saline, even at room temperature, ensures the acquisition of representative molecular profiles using ambient ionization mass spectrometry.
Asunto(s)
Encéfalo , Solución Salina , Animales , Lípidos/análisis , Espectrometría de Masas , Ratas , Reproducibilidad de los ResultadosRESUMEN
This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aß) peptides in human samples. Since Aß is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aß proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aß studies. However, Aß forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aß species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aß studies; and considers the potential of MS techniques for further studies of Aß-peptides.
RESUMEN
Ambient ionization mass spectrometry has become one of the most promising approaches for rapid and high-throughput screening of small molecules in complex biological matrices for emergency medicine, forensics, and food and agriculture applications. The simple procedures for sample collection and ionization without additional pretreatment are vital in these fields. Many efforts have been devoted to modifying various ambient ionization techniques to simplify the procedures and improve the robustness and sensitivity of the methods. Here, we demonstrate the implementation of rigid spherical sampler probes to improve the robustness of touch spray ionization mass spectrometry. The sphericity of the probes increases the stability of the cone-jet mode of electrospray, reduces the requirements for fine positioning of a sampler in the ion source, and decreases the possibility of corona discharge occurrence. The utilization of spherical sampler probes allows fast, non-invasive sampling, followed by rapid analysis for various drugs of different chemical classes in complex biological matrices, such as the whole blood or sebum collected from the skin surface. The linearity of the analytical signal response from drug concentration confirms the possibility of creating a simple semiquantitative method for small molecules monitoring using spherical sampler probes.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Preparaciones Farmacéuticas/análisis , Manejo de Especímenes/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , HumanosRESUMEN
Diffuse gliomas continue to be an important problem in neuro-oncology. To solve it, studies have considered the issues of molecular pathogenesis from the intratumoral heterogeneity point. Here, we carried out a comparative dynamic analysis of the different cell populations' content in diffuse gliomas of different molecular profiles and grades, considering the cell populations' functional properties and the relationship with patient survival, using flow cytometry, immunofluorescence, multiparametric fluorescent in situ hybridization, polymerase chain reaction, and cultural methods. It was shown that an increase in the IDH-mutant astrocytomas and oligodendrogliomas malignancy is accompanied by an increase in stem cells' proportion and mesenchymal cell populations' appearance arising from oligodendrocyte-progenitor-like cells with cell plasticity and cells' hypoxia response programs' activation. In glioblastomas, malignancy increase is accompanied by an increase in both stem and definitive cells with mesenchymal differentiation, while proneuronal glioma stem cells are the most likely the source of mesenchymal glioma stem cells, which, in hypoxic conditions, further give rise to mesenchymal-like cells. Clinical confirmation was a mesenchymal-like cell and mesenchymal glioma stem cell number, and the hypoxic and plastic molecular programs' activation degree had a significant effect on relapse-free and overall survival. In general, we built a multi-vector model of diffuse gliomas' pathogenetic tracing up to the practical plane.
RESUMEN
Tumor cell percentage (TCP) is an essential characteristic of biopsy samples that directly affects the sensitivity of molecular testing in clinical practice. Apart from clarifying diagnoses, rapid evaluation of TCP combined with various neuronavigation systems can be used to support decision making in neurosurgery. It is known that ambient mass spectrometry makes it possible to rapidly distinguish healthy from malignant tissues. In connection with this, here we demonstrate the possibility of using non-imaging ambient mass spectrometry to evaluate TCP in glial tumor tissues with a high degree of confidence. Molecular profiles of histologically annotated human glioblastoma tissue samples were obtained using the inline cartridge extraction ambient mass spectrometry approach. XGBoost regressors were trained to evaluate tumor cell percentage. Using cross-validation, it was estimated that the TCP was determined by the regressors with a precision of approximately 90% using only low-resolution data. This result demonstrates that ambient mass spectrometry provides an accurate method todetermine TCP in dissected tissues even without implementing mass spectrometry imaging. The application of such techniques offers the possibility to automate routine tissue screening and TCP evaluation to boost the throughput of pathology laboratories. Rapid estimation of tumor cell percentage during neurosurgery.
Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Glioblastoma/patología , Espectrometría de Masa por Ionización de Electrospray/métodos , Biopsia , Encéfalo/cirugía , Neoplasias Encefálicas/cirugía , Glioblastoma/cirugía , HumanosRESUMEN
In this work, we demonstrate a new approach for interactively assessing hyperspectral data spatial structures for heterogeneity using mass spectrometry imaging. This approach is based on the visualization of the cosine distance as the similarity levels between mass spectra of a chosen region and the rest of the image (sample). The applicability of the method is demonstrated on a set of mass spectrometry images of frontal mouse brain slices. Selection of the reference pixel of the mass spectrometric image and a further view of the corresponding cosine distance map helps to prepare supporting vectors for further analysis, select features, and carry out biological interpretation of different tissues in the mass spectrometry context with or without histological annotation. Visual inspection of the similarity maps reveals the spatial distribution of features in tissue samples, which can serve as the molecular histological annotation of a slide.
Asunto(s)
Diagnóstico por Imagen , Pruebas Diagnósticas de Rutina , Animales , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Alzheimer's disease (AD) is the leading cause of dementia among the elderly. Neuropathologically, AD is characterized by the deposition of a 39- to 42-amino acid long ß-amyloid (Aß) peptide in the form of senile plaques. Several post-translational modifications (PTMs) in the N-terminal domain have been shown to increase the aggregation and cytotoxicity of Aß, and specific Aß proteoforms (e.g., Aß with isomerized D7 (isoD7-Aß)) are abundant in the senile plaques of AD patients. Animal models are indispensable tools for the study of disease pathogenesis, as well as preclinical testing. In the presented work, the accumulation dynamics of Aß proteoforms in the brain of one of the most widely used amyloid-based mouse models (the 5xFAD line) was monitored. Mass spectrometry (MS) approaches, based on ion mobility separation and the characteristic fragment ion formation, were applied. The results indicated a gradual increase in the Aß fraction of isoD7-Aß, starting from approximately 8% at 7 months to approximately 30% by 23 months of age. Other specific PTMs, in particular, pyroglutamylation, deamidation, and oxidation, as well as phosphorylation, were also monitored. The results for mice of different ages demonstrated that the accumulation of Aß proteoforms correlate with the formation of Aß deposits. Although the mouse model cannot be a complete analogue of the processes occurring in the human brain in AD, and several of the observed parameters differ significantly from human values supposedly due to the limited lifespan of the model animals, this dynamic study provides evidence on at least one of the possible mechanisms that can trigger amyloidosis in AD, i.e., the hypothesis on the relationship between the accumulation of isoD7-Aß and the progression of AD-like pathology.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Placa Amiloide/metabolismoRESUMEN
Recently, mass-spectrometry methods show its utility in tumor boundary location. The effect of differences between research and clinical protocols such as low- and high-resolution measurements and sample storage have to be understood and taken into account to transfer methods from bench to bedside. In this study, we demonstrate a simple way to compare mass spectra obtained by different experimental protocols, assess its quality, and check for the presence of outliers and batch effect in the dataset. We compare the mass spectra of both fresh and frozen-thawed astrocytic brain tumor samples obtained with the inline cartridge extraction prior to electrospray ionization. Our results reveal the importance of both positive and negative ion mode mass spectrometry for getting reliable information about sample diversity. We show that positive mode highlights the difference between protocols of mass spectra measurement, such as fresh and frozen-thawed samples, whereas negative mode better characterizes the histological difference between samples. We also show how the use of similarity spectrum matrix helps to identify the proper choice of the measurement parameters, so data collection would be kept reliable, and analysis would be correct and meaningful.
Asunto(s)
Neoplasias Encefálicas/diagnóstico , Extractos Celulares/análisis , Espectrometría de Masas/métodos , Algoritmos , Astrocitos/citología , Humanos , Reproducibilidad de los Resultados , Medición de RiesgoRESUMEN
Preeclampsia (PE) is a severe pregnancy complication, which may be considered as a systemic response in the second half of pregnancy to physiological failures in the first trimester, and can lead to very serious consequences for the health of the mother and fetus. Since PE is often associated with proteinuria, urine proteomic assays may represent a powerful tool for timely diagnostics and appropriate management. High resolution mass spectrometry was applied for peptidome analysis of 127 urine samples of pregnant women with various hypertensive complications: normotensive controls (n = 17), chronic hypertension (n = 16), gestational hypertension (n = 15), mild PE (n = 25), severe PE (n = 25), and 29 patients with complicated diagnoses. Analysis revealed 3869 peptides, which mostly belong to 116 groups with overlapping sequences. A panel of 22 marker peptide groups reliably differentiating PE was created by multivariate statistics, and included 15 collagen groups (from COL1A1, COL3A1, COL2A1, COL4A4, COL5A1, and COL8A1), and single loci from alpha-1-antitrypsin, fibrinogen, membrane-associated progesterone receptor component 1, insulin, EMI domain-containing protein 1, lysine-specific demethylase 6B, and alpha-2-HS-glycoprotein each. ROC analysis of the created model resulted in 88% sensitivity, 96.8% specificity, and receiver operating characteristic curve (AUC) = 0.947. Obtained results confirm the high diagnostic potential of urinary peptidome profiling for pregnancy hypertensive disorders diagnostics.
RESUMEN
Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry can be used for rapid quantitation of peptides with various post-translational modifications (PTM), even if they do not shift the mass of the native peptide. Previously, it was shown that MALDI-TOF MS can be used for quantitation of isoD7 beta-amyloid 1-42 peptide. On the basis of the differences in the collision-induced dissociation fragmentation pattern of native Aß, isoD7 Aß, isoD23 Aß, and isoD7_23 peptide (a di-isomerized peptide with both isomerization of D7 and D23 residues), we developed a MALDI-TOF-based method for simultaneous quantitation of all of these isoforms. Using multivariate regression for analysis of fragment MS data, the method allows the determination of the molar fractions of all of these isoforms with up to 16% error for mixtures with 2 pmol total amount of the beta-amyloid peptide.
Asunto(s)
Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/química , Ácido Aspártico/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fraccionamiento Químico/métodos , Isomerismo , Análisis Multivariante , Dinámicas no LinealesRESUMEN
The development of perspective diagnostic techniques in medicine requires efficient high-throughput biological sample analysis methods. Here, we present an inline cartridge extraction that facilitates the screening rate of mass spectrometry shotgun lipidomic analysis of tissue samples. We illustrate the method by its application to tumor tissue identification in neurosurgery. In perspective, this high-performance method provides new possibilities for the investigation of cancer pathogenesis and metabolic disorders.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Espectrometría de Masas , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos , Femenino , Humanos , MasculinoRESUMEN
Evaluation of post-translational modifications of protein molecules is important for both basic and applied biomedical research. Mass spectrometric quantitative studies of modifications, which do not change the mass of the protein, such as isomerization of aspartic acid, do not necessarily require the use of isotope-labelled standards. However, the accurate solution of this problem requires a deep understanding of the relationship between the mole fractions of the isomers and the peak intensities in the mass spectra. In previous studies on the isomerization of aspartic acid in short beta-amyloid fragments, it has been shown that calibration curves used for such quantitative studies often have a non-linear form. The reason for the deviation in the shape of the calibration curves from linearity has not yet been established. Here, we propose an explanation for this phenomenon based on a probabilistic model of the fragmentation process and present a general approach for the selection of fragments that can be used for quantitative studies of the degree of isomerization. Graphical Abstract.
Asunto(s)
Ácido Aspártico/análisis , Modelos Teóricos , Péptidos/química , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Ácido Aspártico/química , Isomerismo , Espectrometría de Masas/métodos , Probabilidad , Reproducibilidad de los ResultadosRESUMEN
Comprehensive studies of the effects of prolonged exposure to space conditions and the overload experienced during landing on physiological and biochemical changes in the human body are extremely important in the context of planning long-distance space flights, which can be associated with constant overloads and various risk factors for significant physiological changes. Exhaled breath condensate (EBC) can be considered as a valuable subject for monitoring physiological changes and is more suitable for long-term storage than traditional monitoring subjects such as blood and urine. Herein, the EBC proteome changes due to the effects of spaceflight factors are analyzed. Thirteen EBC samples were collected from five Russian cosmonauts (i) one month before flight (background), (ii) immediately upon landing modules in the field (R0) after 169-199 days spaceflights, and (iii) on the seventh day after landing (R+7). Semi-quantitative label-free EBC proteomic analysis resulted in 164 proteins, the highest number of which was detected in EBC after landing (R0). Pathways enrichment analysis using the GO database reveals a large group of proteins which take part in keratinization processes (CASP14, DSG1, DSP, JUP, and so on). Nine proteins (including KRT2, KRT9, KRT1, KRT10, KRT14, DCD, KRT6C, KRT6A, and KRT5) were detected in all three groups. A two-sample Welch's t-test identified a significant change in KRT2 and KRT9 levels after landing. Enrichment analysis using the KEGG database revealed the significant participation of detected proteins in pathogenic E. coli infection (ACTG1, TUBA1C, TUBA4A, TUBB, TUBB8, and YWHAZ), which may indicate microbiota changes associated with being in space. This assumption is confirmed by microbial composition analysis. In general, the results suggest that EBC can be used for noninvasive monitoring of health status and respiratory tract pathologies during spaceflights, and that the obtained data are important for the development of medicine for use in extreme situations. Data are available from ProteomeXchange using the identifier PXD014191.