Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Resour Econ (Dordr) ; 76(4): 901-911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32836847

RESUMEN

As nations struggle to restart their economy after COVID-19 lockdowns, calls to include green investments in a pandemic-related stimulus are growing. Yet little research provides evidence of the effectiveness of a green stimulus. We begin by summarizing recent research on the effectiveness of the green portion of the 2009 American Recovery and Reinvestment Act on employment growth. Green investments are most effective in communities whose workers have the appropriate "green" skills. We then provide new evidence on the skills requirements of both green and brown occupations, as well as from occupations at risk of job losses due to COVID-19, to illustrate which workers are most likely to benefit from a pandemic-related green stimulus. We find similarities between some energy sector workers and green jobs, but a poor match between green jobs and occupations at risk due to COVID-19. Finally, we provide suggestive evidence on the potential for job training programs to help ease the transition to a green economy.

3.
Nat Commun ; 10(1): 2856, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253774

RESUMEN

Microfilaments (actin) and microtubules represent the extremes in eukaryotic cytoskeleton cross-sectional dimensions, raising the question of whether filament architectures are limited by protein fold. Here, we report the cryoelectron microscopy structure of a complex filament formed from 15 protofilaments of an actin-like protein. This actin-like ParM is encoded on the large pCBH Clostridium botulinum plasmid. In cross-section, the ~26 nm diameter filament comprises a central helical protofilament surrounded by intermediate and outer layers of six and eight twisted protofilaments, respectively. Alternating polarity of the layers allows for similar lateral contacts between each layer. This filament design is stiffer than the actin filament, and has likely been selected for during evolution to move large cargos. The comparable sizes of microtubule and pCBH ParM filaments indicate that larger filament architectures are not limited by the protomer fold. Instead, function appears to have been the evolutionary driving force to produce broad, complex filaments.


Asunto(s)
Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Clostridium botulinum/metabolismo , Citoesqueleto/fisiología , Citoesqueleto de Actina , Actinas/genética , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica/fisiología , Modelos Moleculares , Conformación Proteica
4.
Nat Commun ; 10(1): 2589, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197138

RESUMEN

X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature.


Asunto(s)
Electrones , Rayos Láser , Microtúbulos/ultraestructura , Imagen Molecular/métodos , Tubulina (Proteína)/ultraestructura , Algoritmos , Cristalografía por Rayos X/instrumentación , Cristalografía por Rayos X/métodos , Procesamiento de Imagen Asistido por Computador , Imagen Molecular/instrumentación , Dispersión de Radiación , Sincrotrones , Rayos X
5.
Bioessays ; 40(4): e1700213, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29484695

RESUMEN

Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines.


Asunto(s)
Actinas/ultraestructura , Citoesqueleto de Actina/ultraestructura , Proteína CapZ/ultraestructura , Microscopía por Crioelectrón , Tropomodulina/ultraestructura
6.
Cytoskeleton (Hoboken) ; 74(12): 472-481, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28574190

RESUMEN

A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked ß-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.


Asunto(s)
Actinas/química , Amiloide/química , Escherichia coli/química , Fimbrias Bacterianas/química , Rayos Láser , Rayos X , Amiloide/ultraestructura , Fimbrias Bacterianas/ultraestructura
7.
Biochim Biophys Acta ; 1860(9): 1942-52, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27297907

RESUMEN

BACKGROUND: Weil's syndrome is caused by Leptospira interrogans infections, a Gram negative bacterium with a distinct thin corkscrew cell shape. The molecular basis for this unusual morphology is unknown. In many bacteria, cell wall synthesis is orchestrated by the actin homolog, MreB. METHODS: Here we have identified the MreB within the L. interrogans genome and expressed the His-tagged protein product of the synthesized gene (Li-MreB) in Escherichia coli. Li-MreB did not purify under standard nucleotide-free conditions used for MreBs from other species, requiring the continual presence of ATP to remain soluble. Covalent modification of Li-MreB free thiols with Alexa488 produced a fluorescent version of Li-MreB. RESULTS: We developed native and denaturing/refolding purification schemes for Li-MreB. The purified product was shown to assemble and disassemble in MgCl2 and KCl dependent manners, as monitored by light scattering and sedimentation studies. The fluorescence spectrum of labeled Li-MreB-Alexa488 showed cation-induced changes in line with an activation process followed by a polymerization phase. The resulting filaments appeared as bundles and sheets under the fluorescence microscope. Finally, since the Li-MreB polymerization was cation dependent, we developed a simple method to measure monovalent cation concentrations within a test case prokaryote, E. coli. CONCLUSIONS: We have identified and initially characterized the cation-dependent polymerization properties of a novel MreB from a non-rod shaped bacterium and developed a method to measure cation concentrations within prokaryotes. GENERAL SIGNIFICANCE: This initial characterization of Li-MreB will enable future structural determination of the MreB filament from this corkscrew-shaped bacterium.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Leptospira interrogans/metabolismo , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Cationes/metabolismo , Pared Celular/metabolismo , Escherichia coli , Genoma Bacteriano/genética , Leptospira interrogans/genética , Leptospirosis/microbiología , Microscopía Fluorescente/métodos , Nucleótidos/metabolismo , Polimerizacion
8.
Proc Natl Acad Sci U S A ; 113(9): E1200-5, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26873105

RESUMEN

Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule.


Asunto(s)
Actinas/metabolismo , Bacillus thuringiensis/metabolismo , ADN Bacteriano/metabolismo , Nanotubos , Plásmidos , Bacillus thuringiensis/genética , Proteínas Fluorescentes Verdes/genética
9.
Commun Integr Biol ; 9(6): e1242538, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28042378

RESUMEN

From yeast to man, an evolutionary distance of 1.3 billion years, the F-actin filament structure has been conserved largely in line with the 94% sequence identity. The situation is entirely different in bacteria. In comparison to eukaryotic actins, the bacterial actin-like proteins (ALPs) show medium to low levels of sequence identity. This is extreme in the case of the ParM family of proteins, which often display less than 20% identity. ParMs are plasmid segregation proteins that form the polymerizing motors that propel pairs of plasmids to the extremities of a cell prior to cell division, ensuring faithful inheritance of the plasmid. Recently, exotic ParM filament structures have been elucidated that show ParM filament geometries are not limited to the standard polar pair of strands typified by actin. Four-stranded non-polar ParM filaments existing as open or closed nanotubules are found in Clostridium tetani and Bacillus thuringiensis, respectively. These diverse architectures indicate that the actin fold is capable of forming a large variety of filament morphologies, and that the conception of the "actin" filament has been heavily influenced by its conservation in eukaryotes. Here, we review the history of the structure determination of the eukaryotic actin filament to give a sense of context for the discovery of the new ParM filament structures. We describe the novel ParM geometries and predict that even more complex actin-like filaments may exist in bacteria. Finally, we compare the architectures of filaments arising from the actin and tubulin folds and conclude that the basic units possess similar properties that can each form a range of structures. Thus, the use of the actin fold in microfilaments and the tubulin fold for microtubules likely arose from a wider range of filament possibilities, but became entrenched as those architectures in early eukaryotes.

11.
J Cell Sci ; 128(11): 2009-19, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25788699

RESUMEN

The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Bacterias/metabolismo , Evolución Biológica , Filogenia , Plantas/metabolismo
12.
Transgenic Res ; 23(3): 519-29, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696087

RESUMEN

Tyrosine kinase 2 (TYK2) has a pivotal role in immunity to infection and tumor surveillance. It is associated with several cytokine receptor chains including type I interferon (IFN) receptor 1 (IFNAR1), interleukin- (IL-) 12 receptor beta 1 (IL-12Rb1) and IL-10R2. We have generated a mouse with a conditional Tyk2 null allele and proved integrity of the conditional Tyk2 locus. TYK2 was successfully removed by the use of ubiquitous and tissue-specific Cre-expressing mouse strains. Myeloid TYK2 was found to critically contribute to the defense against murine cytomegalovirus. Ubiquitous TYK2 ablation severely impaired tumor immunosurveillance, while deletion in myeloid, dendritic or T cells alone showed no effect. The conditional Tyk2 mouse strain will be instrumental to further dissect TYK2 functions in infection, inflammation and cancer.


Asunto(s)
Muromegalovirus/genética , Neoplasias/genética , TYK2 Quinasa/genética , Animales , Ratones , Ratones Transgénicos , Muromegalovirus/patogenicidad , Neoplasias/patología , Transducción de Señal/genética , Linfocitos T , TYK2 Quinasa/biosíntesis
13.
Cytoskeleton (Hoboken) ; 70(11): 775-95, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24155256

RESUMEN

The gelsolin homology (GH) domain has been found to date exclusively in actin-binding proteins. In humans, three copies of the domain are present in CapG, five copies in supervillin, and six copies each in adseverin, gelsolin, flightless I and the villins: villin, advillin and villin-like protein. Caenorhabditis elegans contains a four-GH-domain protein, GSNL-1. These architectures are predicted to have arisen from gene triplication followed by gene duplication to result in the six-domain protein. The subsequent loss of one, two or three domains produced the five-, four-, and three-domain proteins, respectively. Here we conducted BLAST and hidden Markov based searches of UniProt and NCBI databases to identify novel gelsolin domain containing proteins. The variety in architectures suggests that the GH domain has been tested in many molecular constructions during evolution. Of particular note is flightless-like I protein (FLIIL1) from Entamoeba histolytica, which combines a leucine rich repeats (LRR) domain, seven GH domains, and a headpiece domain, thus combining many of the features of flightless I with those of villin or supervillin. As such, the GH domain superfamily appears to have developed along complex routes. The distribution of these proteins was analyzed in the 343 completely sequenced genomes, mapped onto the tree of life, and phylogenetic trees of the proteins were constructed to gain insight into their evolution. © 2013 Wiley Periodicals, Inc.


Asunto(s)
Gelsolina/química , Familia de Multigenes , Homología de Secuencia de Aminoácido , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Genoma/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
14.
J Biol Chem ; 287(44): 37078-88, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22908230

RESUMEN

In preparation for mammalian cell division, microtubules repeatedly probe the cytoplasm to capture chromosomes and assemble the mitotic spindle. Critical features of this microtubule system are the formation of radial arrays centered at the centrosomes and dynamic instability, leading to persistent cycles of polymerization and depolymerization. Here, we show that actin homolog, ParM-R1 that drives segregation of the R1 multidrug resistance plasmid from Escherichia coli, can also self-organize in vitro into asters, which resemble astral microtubules. ParM-R1 asters grow from centrosome-like structures consisting of interconnected nodes related by a pseudo 8-fold symmetry. In addition, we show that ParM-R1 is able to perform persistent microtubule-like oscillations of assembly and disassembly. In vitro, a whole population of ParM-R1 filaments is synchronized between phases of growth and shrinkage, leading to prolonged synchronous oscillations even at physiological ParM-R1 concentrations. These results imply that the selection pressure to reliably segregate DNA during cell division has led to common mechanisms within diverse segregation machineries.


Asunto(s)
Actinas/química , Proteínas de Escherichia coli/química , Escherichia coli , Microtúbulos/química , Actinas/genética , Actinas/ultraestructura , Adenosina Trifosfato/química , Sustitución de Aminoácidos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Análisis de Fourier , Guanosina Trifosfato/química , Hidrólisis , Luz , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Dispersión de Radiación
15.
J Biol Chem ; 287(25): 21121-9, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22514279

RESUMEN

Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Clostridium tetani/metabolismo , Modelos Moleculares , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clostridium tetani/química , Clostridium tetani/genética , Plásmidos/química , Plásmidos/genética , Plásmidos/metabolismo , Estructura Secundaria de Proteína
16.
Cytoskeleton (Hoboken) ; 69(2): 71-87, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22232062

RESUMEN

All cells, from simple bacteria to complex human tissues, rely on extensive networks of protein fibers to help maintain their proper form and function. These filament systems usually do not operate as single filaments, but form complex suprastructures, which are essential for specific cellular functions. Here, we describe the progress in determining the architectures of molecular filamentous suprastructures, the principles leading to their formation, and the mechanisms by which they may facilitate function. The complex eukaryotic cytoskeleton is tightly regulated by a large number of actin- or microtubule-associated proteins. In contrast, recently discovered bacterial actins and tubulins have few associated regulatory proteins. Hence, the quest to find basic principles that govern the formation of filamentous suprastructures is simplified in bacteria. Three common principles, which have been probed extensively during evolution, can be identified that lead to suprastructures formation: cationic counterion fluctuations; self-association into liquid crystals; and molecular crowding. The underlying physics of these processes will be discussed with respect to physiological circumstance.


Asunto(s)
Citoesqueleto de Actina/fisiología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/fisiología , Animales , Humanos
17.
Mol Microbiol ; 80(2): 300-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21362063

RESUMEN

Cells rely on extensive networks of protein fibres to help maintain their proper form and function. For species ranging from bacteria to humans, this 'cytoskeleton' is integrally involved in diverse processes including movement, DNA segregation, cell division and transport of molecular cargoes. The most abundant cytoskeletal filament-forming protein, F-actin, is remarkably well conserved across eukaryotic species. From yeast to human - an evolutionary distance of over one billion years - only about 10% of residues in actin have changed and the filament structure has been highly conserved. Surprisingly, recent structural data show this to be not the case for filamentous bacterial actins, which exhibit highly divergent helical symmetries in conjunction with structural plasticity or polymorphism, and dynamic properties that may make them uniquely suited for the specific cellular processes in which they participate. Bacterial actin filaments often organize themselves into complex structures within the prokaryotic cell, driven by molecular crowding and cation association, to form bundles (ParM) or interwoven sheets (MreB). The formation of supramolecular structures is essential for bacterial cytoskeleton function. We discuss the underlying physical principles that lead to complex structure formation and the implications these have on the physiological functions of cytoskeletal proteins.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Citoesqueleto de Actina/genética , Proteínas Bacterianas/genética , Citoesqueleto/metabolismo , Variación Genética , Sustancias Macromoleculares/metabolismo
18.
Commun Integr Biol ; 3(5): 451-3, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21057638

RESUMEN

Bacterial cytoskeletal filamentous proteins, like their eukaryotic counterparts, are key regulators and central organizers of many cellular processes including morphogenesis, cell division, DNA segregation and movement. Such filaments often organize themselves into complex structures within the prokaryotic cell, driven by molecular crowding and cation association, to form bundles (ParM), rings, toroids and helical spirals (FtsZ) or interwoven sheets (MreB). The formation of complex structures is essential for bacterial cytoskeleton function. Here, we highlight the suprastructures of the prokaryotic cytoskeleton that have been observed by high resolution in vitro electron microscopy and set them in perspective with in vivo observations. We discuss the underlying physical principles that lead to complex structure formation.

19.
J Biol Chem ; 285(21): 15858-65, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20223832

RESUMEN

In vivo fluorescence microscopy studies of bacterial cells have shown that the bacterial shape-determining protein and actin homolog, MreB, forms cable-like structures that spiral around the periphery of the cell. The molecular structure of these cables has yet to be established. Here we show by electron microscopy that Thermatoga maritime MreB forms complex, several mum long multilayered sheets consisting of diagonally interwoven filaments in the presence of either ATP or GTP. This architecture, in agreement with recent rheological measurements on MreB cables, may have superior mechanical properties and could be an important feature for maintaining bacterial cell shape. MreB polymers within the sheets appear to be single-stranded helical filaments rather than the linear protofilaments found in the MreB crystal structure. Sheet assembly occurs over a wide range of pH, ionic strength, and temperature. Polymerization kinetics are consistent with a cooperative assembly mechanism requiring only two steps: monomer activation followed by elongation. Steady-state TIRF microscopy studies of MreB suggest filament treadmilling while high pressure small angle x-ray scattering measurements indicate that the stability of MreB polymers is similar to that of F-actin filaments. In the presence of ADP or GDP, long, thin cables formed in which MreB was arranged in parallel as linear protofilaments. This suggests that the bacterial cell may exploit various nucleotides to generate different filament structures within cables for specific MreB-based functions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Multimerización de Proteína/fisiología , Thermotoga maritima/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas del Citoesqueleto/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Estructura Cuaternaria de Proteína , Thermotoga maritima/metabolismo
20.
J Biol Chem ; 285(15): 11281-9, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20139085

RESUMEN

Tuberculosis causes the most death in humans by any bacterium. Drug targeting of bacterial cytoskeletal proteins requires detailed knowledge of the various filamentous suprastructures and dynamic properties. Here, we have investigated by high resolution electron microscopy the assembly of cell division protein and microtubule homolog FtsZ from Mycobacterium tuberculosis (MtbFtsZ) in vitro in the presence of various monovalent salts, crowding agents and polycations. Supramolecular structures, including two-dimensional rings, three-dimensional toroids, and multistranded helices formed in the presence of molecular crowding, were similar to those observed by fluorescence microscopy in bacteria in vivo. Dynamic properties of MtbFtsZ filaments were visualized by light scattering and real time total internal reflection fluorescence microscopy. Interestingly, MtbFtsZ revealed a form of dynamic instability at steady state. Cation-induced condensation phenomena of bacterial cytomotive polymers have not been investigated in any detail, although it is known that many bacteria can contain high amounts of polycations, which may modulate the prokaryotic cytoskeleton. We find that above a threshold concentration of polycations which varied with the valence of the cation, ionic strength, and pH, MtbFtsZ mainly formed sheets. The general features of these cation-induced condensation phenomena could be explained in the framework of the Manning condensation theory. Chirality and packing defects limited the dimensions of sheets and toroids at steady state as predicted by theoretical models. In first approximation simple physical principles seem to govern the formation of MtbFtsZ suprastructures.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Mycobacterium tuberculosis/metabolismo , Biofisica/métodos , Cationes , Proteínas del Citoesqueleto/química , Citoesqueleto/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Luz , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Polímeros/química , Dispersión de Radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...