Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 155(4): 2385-2391, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563625

RESUMEN

Fish bioacoustics, or the study of fish hearing, sound production, and acoustic communication, was discussed as early as Aristotle. However, questions about how fishes hear were not really addressed until the early 20th century. Work on fish bioacoustics grew after World War II and considerably in the 21st century since investigators, regulators, and others realized that anthropogenic (human-generated sounds), which had primarily been of interest to workers on marine mammals, was likely to have a major impact on fishes (as well as on aquatic invertebrates). Moreover, passive acoustic monitoring of fishes, recording fish sounds in the field, has blossomed as a noninvasive technique for sampling abundance, distribution, and reproduction of various sonic fishes. The field is vital since fishes and aquatic invertebrates make up a major portion of the protein eaten by a signification portion of humans. To help better understand fish bioacoustics and engage it with issues of anthropogenic sound, this special issue of The Journal of the Acoustical Society of America (JASA) brings together papers that explore the breadth of the topic, from a historical perspective to the latest findings on the impact of anthropogenic sounds on fishes.


Asunto(s)
Audición , Sonido , Animales , Humanos , Acústica , Cetáceos , Peces
2.
J Acoust Soc Am ; 154(5): 2937-2949, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938046

RESUMEN

There are substantial interspecific differences in the morphology of the ears of the more than 34 000 living fish species. However, almost nothing is known about the functional significance of these differences. One reason is that most comparative studies have been conducted on shallow-water species with far less focus on the numerous species that inhabit the depths of the oceans. Thus, to get a better sense of ear diversity in fishes and its potential role in hearing, this study focuses on the saccule and lagena, the primary auditory end organs, in six species of the family Macrouridae (rattails), a large group of fishes that typically inhabit depths from 1000 to 4000 m. The inner ears and, particularly, the saccules and lagenae in these species are large with the saccule resembling that of other Gadiformes. The lagenae of all macrourids studied here have serrated edge otoliths and highly diverse hair cell ciliary bundle shapes. The differences found in the inner ear anatomy of macrourids likely reflect the sensory advantages in different habitats that are related to the benefits and constraints at different depths, the fish's particular lifestyle, and the trade-off among different sensory systems.


Asunto(s)
Peces , Gadiformes , Animales , Sáculo y Utrículo , Audición , Membrana Otolítica
3.
J Acoust Soc Am ; 154(4): 2021-2035, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37782124

RESUMEN

Sturgeons are basal bony fishes, most species of which are considered threatened and/or endangered. Like all fishes, sturgeons use hearing to learn about their environment and perhaps communicate with conspecifics, as in mating. Thus, anything that impacts the ability of sturgeon to hear biologically important sounds could impact fitness and survival of individuals and populations. There is growing concern that the sounds produced by human activities (anthropogenic sound), such as from shipping, commercial barge navigation on rivers, offshore windfarms, and oil and gas exploration, could impact hearing by aquatic organisms. Thus, it is critical to understand how sturgeon hear, what they hear, and how they use sound. Such data are needed to set regulatory criteria for anthropogenic sound to protect these animals. However, very little is known about sturgeon behavioral responses to sound and their use of sound. To help understand the issues related to sturgeon and anthropogenic sound, this review first examines what is known about sturgeon bioacoustics. It then considers the potential effects of anthropogenic sound on sturgeon and, finally identifies areas of research that could substantially improve knowledge of sturgeon bioacoustics and effects of anthropogenic sound. Filling these gaps will help regulators establish appropriate protection for sturgeon.


Asunto(s)
Peces , Sonido , Humanos , Animales , Peces/fisiología , Audición
4.
J Acoust Soc Am ; 154(1): 518-532, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497961

RESUMEN

The potential effects of underwater anthropogenic sound and substrate vibration from offshore renewable energy development on the behavior, fitness, and health of aquatic animals is a continuing concern with increased deployments and installation of these devices. Initial focus of related studies concerned offshore wind. However, over the past decade, marine energy devices, such as a tidal turbines and wave energy converters, have begun to emerge as additional, scalable renewable energy sources. Because marine energy converters (MECs) are not as well-known as other anthropogenic sources of potential disturbance, their general function and what is known about the sounds and substrate vibrations that they produce are introduced. While most previous studies focused on MECs and marine mammals, this paper considers the potential of MECs to cause acoustic disturbances affecting nearshore and tidal fishes and invertebrates. In particular, the focus is on particle motion and substrate vibration from MECs because these effects are the most likely to be detected by these animals. Finally, an analysis of major data gaps in understanding the acoustics of MECs and their potential impacts on fishes and aquatic invertebrates and recommendations for research needed over the next several years to improve understanding of these potential impacts are provided.


Asunto(s)
Invertebrados , Ruido , Animales , Peces , Sonido , Cetáceos , Acústica
5.
J Acoust Soc Am ; 153(2): 761, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36859129

RESUMEN

For over 50 years, Richard R. (Dick) Fay made major contributions to our understanding of vertebrate hearing. Much of Dick's work focused on hearing in fishes and, particularly, goldfish, as well as a few other species, in a substantial body of work on sound localization mechanisms. However, Dick's focus was always on using his studies to try and understand bigger issues of vertebrate hearing and its evolution. This article is slightly adapted from an article that Dick wrote in 2010 on the closure of the Parmly Hearing Institute at Loyola University Chicago. Except for small modifications and minor updates, the words and ideas herein are those of Dick.


Asunto(s)
Audición , Localización de Sonidos , Escritura
6.
J Assoc Res Otolaryngol ; 24(1): 1-4, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36253660

RESUMEN

We review the history of the creation of the Journal of the Association for Research in Otolaryngology (JARO). We begin with the pre-history events that cover the initial concept, committee work and discussions that led the ARO to decide to publish its own journal. Finally, we provide a brief look at the initial stages of forming JARO.


Asunto(s)
Otolaringología , Edición
7.
J Acoust Soc Am ; 152(2): 733, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36050166

RESUMEN

Studies of the effects of sounds from underwater explosions on fishes have not included examination of potential effects on the ear. Caged Pacific mackerel (Scomber japonicus) located at seven distances (between approximately 35 and 800 m) from a single detonation of 4.5 kg of C4 explosives were exposed. After fish were recovered from the cages, the sensory epithelia of the saccular region of the inner ears were prepared and then examined microscopically. The number of hair cell (HC) ciliary bundles was counted at ten preselected 2500 µm2 regions. HCs were significantly reduced in fish exposed to the explosion as compared to the controls. The extent of these differences varied by saccular region, with damage greater in the rostral and caudal ends and minimal in the central region. The extent of effect also varied in animals at different distances from the explosion, with damage occurring in fish as far away as 400 m. While extrapolation to other species and other conditions (e.g., depth, explosive size, and distance) must be performed with extreme caution, the effects of explosive sounds should be considered when environmental impacts are estimated for marine projects.


Asunto(s)
Oído Interno , Perciformes , Animales , Explosiones , Peces , Sonido
8.
J Acoust Soc Am ; 151(6): 3947, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35778189

RESUMEN

Underwater explosions from activities such as construction, demolition, and military activities can damage non-auditory tissues in fishes. To better understand these effects, Pacific mackerel (Scomber japonicus) were placed in mid-depth cages with water depth of approximately 19.5 m and exposed at distances of 21 to 807 m to a single mid-depth detonation of C4 explosive (6.2 kg net explosive weight). Following exposure, potential correlations between blast acoustics and observed physical effects were examined. Primary effects were damage to the swim bladder and kidney that exceeded control levels at ≤333 m from the explosion [peak sound pressure level 226 dB re 1 µPa, sound exposure level (SEL) 196 dB re 1 µPa2 s, pressure impulse 98 Pa s]. A proportion of fish were dead upon retrieval at 26-40 min post exposure in 6 of 12 cages located ≤157 m from the explosion. All fish that died within this period suffered severe injuries, especially swim bladder and kidney rupture. Logistic regression models demonstrated that fish size or mass was not important in determining susceptibility to injury and that peak pressure and SEL were better predictors of injury than was pressure impulse.


Asunto(s)
Explosiones , Perciformes , Sacos Aéreos , Animales , Peces , Sonido
9.
Zebrafish ; 19(2): 37-48, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35439045

RESUMEN

Zebrafish, like all fish species, use sound to learn about their environment. Thus, human-generated (anthropogenic) sound added to the environment has the potential to disrupt the detection of biologically relevant sounds, alter behavior, impact fitness, and produce stress and other effects that can alter the well-being of animals. This review considers the bioacoustics of zebrafish in the laboratory with two goals. First, we discuss zebrafish hearing and the problems and issues that must be considered in any studies to get a clear understanding of hearing capabilities. Second, we focus on the potential effects of sounds in the tank environment and its impact on zebrafish physiology and health. To do this, we discuss underwater acoustics and the very specialized acoustics of fish tanks, in which zebrafish live and are studied. We consider what is known about zebrafish hearing and what is known about the potential impacts of tank acoustics on zebrafish and their well-being. We conclude with suggestions regarding the major gaps in what is known about zebrafish hearing as well as questions that must be explored to better understand how well zebrafish tolerate and deal with the acoustic world they live in within laboratories.


Asunto(s)
Condicionamiento Físico Animal , Pez Cebra , Acústica , Animales , Audición/fisiología , Sonido
10.
J Acoust Soc Am ; 151(1): 205, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105040

RESUMEN

There are substantial knowledge gaps regarding both the bioacoustics and the responses of animals to sounds associated with pre-construction, construction, and operations of offshore wind (OSW) energy development. A workgroup of the 2020 State of the Science Workshop on Wildlife and Offshore Wind Energy identified studies for the next five years to help stakeholders better understand potential cumulative biological impacts of sound and vibration to fishes and aquatic invertebrates as the OSW industry develops. The workgroup identified seven short-term priorities that include a mix of primary research and coordination efforts. Key research needs include the examination of animal displacement and other behavioral responses to sound, as well as hearing sensitivity studies related to particle motion, substrate vibration, and sound pressure. Other needs include: identification of priority taxa on which to focus research; standardization of methods; development of a long-term highly instrumented field site; and examination of sound mitigation options for fishes and aquatic invertebrates. Effective assessment of potential cumulative impacts of sound and vibration on fishes and aquatic invertebrates is currently precluded by these and other knowledge gaps. However, filling critical gaps in knowledge will improve our understanding of possible sound-related impacts of OSW energy development to populations and ecosystems.


Asunto(s)
Ecosistema , Viento , Animales , Peces/fisiología , Invertebrados , Investigación , Sonido , Vibración
11.
Hear Res ; 425: 108393, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34823877

RESUMEN

Investigators working with fish bioacoustics used to refer to fishes that have a narrow hearing bandwidth and poor sensitivity as "hearing generalists" (or "non-specialists"), while fishes that could detect a wider hearing bandwidth and had greater sensitivity were referred to as specialists. However, as more was learned about fish hearing mechanism and capacities, these terms became hard to apply since it was clear there were gradations in hearing capabilities. Popper and Fay, in a paper in Hearing Research in 2011, proposed that these terms be dropped because of the gradation. While this was widely accepted by investigators, it is now apparent that the lack of relatively concise terminology for fish hearing capabilities makes it hard to discuss fish hearing. Thus, in this paper we resurrect the terms specialist and non-specialist but use them with modifiers to express the specific structure of function that is considered a specialization. Moreover, this resurrection recognizes that hearing specializations in fishes may not only be related to increased bandwidth and/or sensitivity, but to other, perhaps more important, aspects of hearing such as sound source localization, discrimination between sounds, and detection of sounds in the presence of masking signals.


Asunto(s)
Audición , Localización de Sonidos , Animales , Peces , Sonido
12.
J Acoust Soc Am ; 149(4): 2782, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33940912

RESUMEN

This paper reviews the nature of substrate vibration within aquatic environments where seismic interface waves may travel along the surface of the substrate, generating high levels of particle motion. There are, however, few data on the ambient levels of particle motion close to the seabed and within the substrates of lakes and rivers. Nor is there information on the levels and the characteristics of the particle motion generated by anthropogenic sources in and on the substrate, which may have major effects upon fishes and invertebrates, all of which primarily detect particle motion. We therefore consider how to monitor substrate vibration and describe the information gained from modeling it. Unlike most acoustic modeling, we treat the substrate as a solid. Furthermore, we use a model where the substrate stiffness increases with depth but makes use of a wave that propagates with little or no dispersion. This shows the presence of higher levels of particle motion than those predicted from the acoustic pressures, and we consider the possible effects of substrate vibration upon fishes and invertebrates. We suggest that research is needed to examine the actual nature of substrate vibration and its effects upon aquatic animals.


Asunto(s)
Invertebrados , Vibración , Acústica , Animales , Peces , Ríos
13.
Trends Ecol Evol ; 36(5): 382-384, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33618935

Asunto(s)
Peces , Ruido , Animales
14.
J Acoust Soc Am ; 148(5): 3027, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33261395

RESUMEN

The Atlantic cod (Gadus morhua) is among the commercially most important fish species in the world. Since sound plays such an important role in the lives of Atlantic cod and its related species, understanding of their bioacoustics is of great importance. Moreover, since cod are amenable to studies of hearing, especially in open bodies of water, they have the potential to become a "model species" for investigations of fish hearing. To serve as the basis for future studies, and to bring together what is now known about cod hearing, this paper reviews the literature to date. While there is some discussion of other species in the paper, the focus is upon what is already known about cod hearing, and what now needs to be known. An additional focus is on what knowledge of cod hearing tells about hearing in fishes in general.


Asunto(s)
Gadus morhua , Animales , Peces , Audición
15.
J Acoust Soc Am ; 148(2): 934, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32873007

RESUMEN

The effects of anthropogenic (man-made) underwater sound on aquatic life have become an important environmental issue. One of the focal ways to present and to share knowledge on the topic has been the international conference on The Effects of Noise on Aquatic Life ("Aquatic Noise"). The conferences have brought together people from diverse interests and backgrounds to share information and ideas directed at understanding and solving the challenges of the potential effects of sound on aquatic life. The papers published here and in a related special issue of Proceedings of Meetings on Acoustics present a good overview of the many topics and ideas covered at the meeting. Indeed, the growth in studies on anthropogenic sound since the first meeting in 2007 reflects the increasing use of oceans, lakes, rivers, and other waterways by humans. However, there are still very substantial knowledge gaps about the effects of sound on all aquatic animals, and these gaps lead to there being a substantial need for a better understanding of the sounds produced by various sources and how these sounds may affect animals.


Asunto(s)
Acústica , Sonido , Animales , Humanos , Ruido/efectos adversos , Ríos , Espectrografía del Sonido
16.
J Acoust Soc Am ; 147(4): 2383, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32359256

RESUMEN

Explosions from activities such as construction, demolition, and military activities are increasingly encountered in the underwater soundscape. However, there are few scientifically rigorous data on the effects of underwater explosions on aquatic animals, including fishes. Thus, there is a need for data on potential effects on fishes collected simultaneously with data on the received signal characteristics that result in those effects. To better understand potential physical effects on fishes, Pacific sardines (Sardinops sagax) were placed in cages at mid-depth at distances of 18 to 246 m from a single mid-depth detonation of C4 explosive (4.66 kg net explosive weight). The experimental site was located in the coastal ocean with a consistent depth of approximately 19.5 m. Following exposure, potential correlations between blast acoustics and observed physical effects were examined. Acoustic metrics were calculated as a function of range, including peak pressure, sound exposure level, and integrated pressure over time. Primary effects related to exposure were damage to the swim bladder and kidney. Interestingly, the relative frequency of these two injuries displayed a non-monotonic dependence with range from the explosion in relatively shallow water. A plausible explanation connecting swim bladder expansion with negative pressure as influenced by bottom reflection is proposed.


Asunto(s)
Explosiones , Sonido , Acústica , Animales , Peces , Espectrografía del Sonido
17.
Trends Ecol Evol ; 35(9): 787-794, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32466956

RESUMEN

Anthropogenic (man-made) sound has the potential to harm marine biota. Increasing concerns about these effects have led to regulation and mitigation, despite there being few data on which to base environmental management, especially for fishes and invertebrates. We argue that regulation and mitigation should always be developed by looking at potential effects from the perspectives of the animals and ecosystems exposed to the sounds. We contend that there is currently a need for far more data on which to base regulation and mitigation, as well as for deciding on future research priorities. This will require a process whereby regulators and researchers come together to identify and implement a strategy that links key scientific and regulatory questions.


Asunto(s)
Ecosistema , Ruido , Animales , Peces , Invertebrados
18.
J Acoust Soc Am ; 147(3): 1762, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32237806

RESUMEN

Underwater sounds from human sources can have detrimental effects upon aquatic animals, including fishes. Thus, it is important to establish sound exposure criteria for fishes, setting out those levels of sound from different sources that have detrimental effects upon them, in order to support current and future protective regulations. This paper considers the gaps in information that must be resolved in order to establish reasonable sound exposure criteria for fishes. The vulnerability of fishes is affected by the characteristics of underwater sounds, which must be taken into account when evaluating effects. The effects that need to be considered include death and injuries, physiological effects, and changes in behavior. Strong emphasis in assessing the effects of sounds has been placed upon the hearing abilities of fishes. However, although hearing has to be taken into account, other actual effects also have to be considered. This paper considers the information gaps that must be filled for the development of future guidelines and criteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...