RESUMEN
BACKGROUND: Flower load in peach is an important determinant of final fruit quality and is subjected to cost-effective agronomical practices, such as the thinning, to finely balance the sink-source relationships within the tree and drive the optimal amount of assimilates to the fruits. Floral transition in peach buds occurs as a result of the integration of specific environmental signals, such as light and temperature, into the endogenous pathways that induce the meristem to pass from vegetative to reproductive growth. The cross talk and integration of the different players, such as the genes and the hormones, are still partially unknown. In the present research, transcriptomics and hormone profiling were applied on bud samples at different developmental stages. A gibberellin treatment was used as a tool to identify the different phases of floral transition and characterize the bud sensitivity to gibberellins in terms of inhibition of floral transition. RESULTS: Treatments with gibberellins showed different efficacies and pointed out a timeframe of maximum inhibition of floral transition in peach buds. Contextually, APETALA1 gene expression was shown to be a reliable marker of gibberellin efficacy in controlling this process. RNA-Seq transcriptomic analyses allowed to identify specific genes dealing with ROS, cell cycle, T6P, floral induction control and other processes, which are correlated with the bud sensitivity to gibberellins and possibly involved in bud development during its transition to the reproductive stage. Transcriptomic data integrated with the quantification of the main bioactive hormones in the bud allowed to identify the main hormonal regulators of floral transition in peach, with a pivotal role played by endogenous gibberellins and cytokinins. CONCLUSIONS: The peach bud undergoes different levels of receptivity to gibberellin inhibition. The stage with maximum responsiveness corresponded to a transcriptional and hormonal crossroad, involving both flowering inhibitors and inductors. Endogenous gibberellin levels increased only at the latest developmental stage, when floral transition was already partially achieved, and the bud was less sensitive to exogenous treatments. A physiological model summarizes the main findings and suggests new research ideas to improve our knowledge about floral transition in peach.
Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Reguladores del Crecimiento de las Plantas , Prunus persica , Giberelinas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Elucidating the molecular mechanisms controlling fruit development is a primary target for the improvement of new apple (Malus × domestica Borkh.) cultivars. The first two weeks of development following pollination are crucial to determine fruit characteristics. During this period, a lot of changes take place in apple fruit, going from rapid cell division to the production of important metabolites. In this work, attention was focused on the phenylpropanoid and flavonoid pathways responsible for the production of numerous compounds contributing to fruit quality, such as flavonols, catechins, dihydrochalcones and anthocyanins. A total of 17 isoenzymes were identified, belonging to seven classes of the phenylpropanoid and flavonoid pathways that, despite showing more than 80% sequence identity, showed differential expression regulation during the first two weeks of apple fruit development. This feature seems to be quite common for most of the enzymes of both pathways. Differential regulation of isoenzymes was shown to be present in both 'Golden Delicious' and a wild relative (Malus mandshurica), even though differences were also present. Each isoenzyme showed a specific pattern of expression in the flower and fruit organs, suggesting that genes coding for enzymes with the same function may control different aspects of plant biology. Finally, promoter analysis was performed in order to highlight differences in the number and type of regulatory motifs. Overall, our results indicate that the control of the expression of genes involved in the phenylpropanoid and flavonoid pathways may be very complex as not only enzymes belonging to the same class, but even putative isoenzymes, can have different roles for the plant. Such genes may represent an important regulatory mechanism, as they would allow the plant to fine-tune the processing of metabolic intermediates towards different branches of the pathway, for example, in an organ-specific way.
Asunto(s)
Malus , Malus/genética , Isoenzimas/genética , Flavonoides , Frutas/genética , AntocianinasRESUMEN
The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in 'Granny Smith' and 'Ladina' apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in 'Granny Smith'. 'Ladina', more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in 'Granny Smith' apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.
RESUMEN
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.
RESUMEN
Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted. A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterward, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal. The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also 1 week after recovery from flooding with the exception of ethanol that leveled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine's root responses highlighting a deep metabolic and transcriptomic reprogramming during and after exposure to waterlogging.
RESUMEN
Freshly consumed apples (Malus domestica L. Borkh) can cause allergic reactions because of the presence of four classes of allergens. Knowledge of the genetic factors affecting the allergenic potential of apples would provide important information for the selection of hypoallergenic genotypes, which can be combined with the adoption of new agronomical practices to produce fruits with a reduced amount of allergens. In the present research, a multiple analytical approach was adopted to characterize the allergenic potential of 24 apple varieties released at different ages (pre- and post-green revolution). A specific workflow was set up including protein quantification by means of polyclonal antibodies, immunological analyses with sera of allergic subjects, enzymatic assays, clinical assessments on allergic patients, and gene expression assays on fruit samples. Taken as a whole, the results indicate that most of the less allergenic genotypes were found among those deriving from selection processes carried out prior to the so-called "green revolution".