Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 5(7): 101653, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019009

RESUMEN

Drug-induced liver injury (DILI) is a significant cause of acute liver failure (ALF) and liver transplantation in the Western world. Acetaminophen (APAP) overdose is a main contributor of DILI, leading to hepatocyte cell death through necrosis. Here, we identified that neddylation, an essential post-translational modification involved in the mitochondria function, was upregulated in liver biopsies from patients with APAP-induced liver injury (AILI) and in mice treated with an APAP overdose. MLN4924, an inhibitor of the neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8)-activating enzyme (NAE-1), ameliorated necrosis and boosted liver regeneration in AILI. To understand how neddylation interferes in AILI, whole-body biotinylated NEDD8 (bioNEDD8) and ubiquitin (bioUB) transgenic mice were investigated under APAP overdose with and without MLN4924. The cytidine diphosphate diacylglycerol (CDP-DAG) synthase TAM41, responsible for producing cardiolipin essential for mitochondrial activity, was found modulated under AILI and restored its levels by inhibiting neddylation. Understanding this ubiquitin-like crosstalk in AILI is essential for developing promising targeted inhibitors for DILI treatment.


Asunto(s)
Acetaminofén , Cardiolipinas , Enfermedad Hepática Inducida por Sustancias y Drogas , Ciclopentanos , Proteína NEDD8 , Pirimidinas , Acetaminofén/efectos adversos , Animales , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Humanos , Pirimidinas/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Cardiolipinas/metabolismo , Ratones , Ciclopentanos/farmacología , Masculino , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Transducción de Señal/efectos de los fármacos , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores
2.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675528

RESUMEN

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Glioblastoma , S-Adenosilmetionina , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , S-Adenosilmetionina/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Aurora Quinasa B/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Recombinasa Rad51/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Mitosis/efectos de los fármacos
3.
Cell Metab ; 35(8): 1373-1389.e8, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37527658

RESUMEN

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, ß-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive ß-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.


Asunto(s)
Neoplasias Hepáticas , S-Adenosilmetionina , Ratones , Animales , S-Adenosilmetionina/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Ayuno , Adenosina Trifosfato/metabolismo , Metionina Adenosiltransferasa/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35887021

RESUMEN

Metastasis is a leading cause of mortality and poor prognosis in colorectal cancer (CRC). Thus, the identification of new compounds targeting cell migration represents a major clinical challenge. Recent findings evidenced a central role for dysregulated Notch in CRC and a correlation between Notch overexpression and tumor metastasis. MicroRNAs (miRNAs) have been reported to cross-talk with Notch for its regulation. Therefore, restoring underexpressed miRNAs targeting Notch could represent an encouraging therapeutic approach against CRC. In this context, S-adenosyl-L-methionine (AdoMet), the universal biological methyl donor, being able to modulate the expression of oncogenic miRNAs could act as a potential antimetastatic agent. Here, we showed that AdoMet upregulated the onco-suppressor miRNAs-34a/-34c/-449a and inhibited HCT-116 and Caco-2 CRC cell migration. This effect was associated with reduced expression of migration-/EMT-related protein markers. We also found that, in colorectal and triple-negative breast cancer cells, AdoMet inhibited the expression of Notch gene, which, by luciferase assay, resulted the direct target of miRNAs-34a/-34c/-449a. Gain- and loss-of-function experiments with miRNAs mimics and inhibitors demonstrated that AdoMet exerted its inhibitory effects by upregulating miRNAs-34a/-34c/-449a. Overall, these data highlighted AdoMet as a novel Notch inhibitor and suggested that the antimetastatic effects of AdoMet involve the miRNA-mediated targeting of Notch signaling pathway.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Células CACO-2 , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacología , Transducción de Señal
5.
Molecules ; 27(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458774

RESUMEN

In the current study, we determined the antioxidant properties of "Greco" grape cane extracts, a typical cultivar of southern Italy. We also explored the anticancer activity of the polyphenol-rich fraction of the extract on head and neck squamous carcinoma cells (HNSCC) and investigated the underlying mechanism. Aqueous extracts were prepared at different pHs and extraction times and the total phenolic and reducing sugar contents were estimated. Radical Scavenging Activity (RSA), Ferric Reducing Antioxidant Power (FRAP), and Total Antioxidant Capacity (TAC) of the extracts were measured. A polyphenol-rich fraction, accounting for 6.7% by weight and characterized mainly by procyanidins and stilbenoids, was prepared from the extract obtained at pH 7 for 60 min. We demonstrated that the extract exerted a cytotoxic effect on HNSCC cell lines by inducing cell cycle arrest via cyclin downregulation and p21 upregulation, and by triggering apoptosis through caspase cascade activation, PARP-1 cleavage, and an increase in the Bax/Bcl-2 ratio. We furnished evidence that the polyphenol-rich fraction played the major role in the anticancer activity of the extract. These outcomes highlighted grape canes from the "Greco" cultivar as a valuable source of polyphenols that may represent good candidates for the design of innovative adjuvant therapies in the treatment of HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Vitis , Antioxidantes/química , Antioxidantes/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico
6.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502219

RESUMEN

Colorectal cancer (CRC) is the second deadliest cancer worldwide despite significant advances in both diagnosis and therapy. The high incidence of CRC and its poor prognosis, partially attributed to multi-drug resistance and antiapoptotic activity of cancer cells, arouse strong interest in the identification and development of new treatments. S-Adenosylmethionine (AdoMet), a natural compound and a nutritional supplement, is well known for its antiproliferative and proapoptotic effects as well as for its potential in overcoming drug resistance in many kinds of human tumors. Here, we report that AdoMet enhanced the antitumor activity of 5-Fluorouracil (5-FU) in HCT 116p53+/+ and in LoVo CRC cells through the inhibition of autophagy, induced by 5-FU as a cell defense mechanism to escape the drug cytotoxicity. Multiple drug resistance is mainly due to the overexpression of drug efflux pumps, such as P-glycoprotein (P-gp). We demonstrate here that AdoMet was able to revert the 5-FU-induced upregulation of P-gp expression and to decrease levels of acetylated NF-κB, the activated form of NF-κB, the major antiapoptotic factor involved in P-gp-related chemoresistance. Overall, our data show that AdoMet, was able to overcome 5-FU chemoresistance in CRC cells by targeting multiple pathways such as autophagy, P-gp expression, and NF-κB signaling activation and provided important implications for the development of new adjuvant therapies to improve CRC treatment and patient outcomes.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , FN-kappa B/metabolismo , S-Adenosilmetionina/farmacología , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , FN-kappa B/genética , Células Tumorales Cultivadas
7.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209866

RESUMEN

Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.

8.
Microorganisms ; 8(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322147

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen that causes nosocomial and community-acquired infections. The spread of resistant strains of K. pneumoniae represents a growing threat to human health, due to the exhaustion of effective treatments. K. pneumoniae releases outer membrane vesicles (OMVs). OMVs are a vehicle for the transport of virulence factors to host cells, causing cell injury. Previous studies have shown changes of gene expression in human bronchial epithelial cells after treatment with K. pneumoniae OMVs. These variations in gene expression could be regulated through microRNAs (miRNAs), which participate in several biological mechanisms. Thereafter, miRNA expression profiles in human bronchial epithelial cells were evaluated during infection with standard and clinical K. pneumoniae strains. Microarray analysis and RT-qPCR identified the dysregulation of miR-223, hsa-miR-21, hsa-miR-25 and hsa-let-7g miRNA sequences. Target gene prediction revealed the essential role of these miRNAs in the regulation of host immune responses involving NF-ĸB (miR-223), TLR4 (hsa-miR-21), cytokine (hsa-miR-25) and IL-6 (hsa-let-7g miRNA) signalling pathways. The current study provides the first large scale expression profile of miRNAs from lung cells and predicted gene targets, following exposure to K. pneumoniae OMVs. Our results suggest the importance of OMVs in the inflammatory response.

9.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297397

RESUMEN

(1) Purpose: The methyl donor S-Adenosylmethionine (AdoMet) has been widely explored as a therapeutic compound, and its application-alone or in combination with other molecules-is emerging as a potential effective strategy for the treatment and chemoprevention of tumours. In this study, we investigated the antitumor activity of AdoMet in Laryngeal Squamous Cell Carcinoma (LSCC), exploring the underlying mechanisms. (2) Results: We demonstrated that AdoMet induced ROS generation and triggered autophagy with a consistent increase in LC3B-II autophagy-marker in JHU-SCC-011 and HNO210 LSCC cells. AdoMet induced ER-stress and activated UPR signaling through the upregulation of the spliced form of XBP1 and CHOP. To gain new insights into the molecular mechanisms underlying the antitumor activity of AdoMet, we evaluated the regulation of miRNA expression profile and we found a downregulation of miR-888-5p. We transfected LSCC cells with miR-888-5p inhibitor and exposed the cells to AdoMet for 48 and 72 h. The combination of AdoMet with miR-888-5p inhibitor synergistically induced both apoptosis and inhibited cell migration paralleled by the up-regulation of MYCBP and CDH1 genes and of their targets. (3) Conclusion: Overall, these data highlighted that epigenetic reprogramming of miRNAs by AdoMet play an important role in inhibiting apoptosis and migration in LSCC cell lines.

10.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374288

RESUMEN

PURPOSE: In order to study novel therapeutic approaches taking advantage of natural compounds showing anticancer and anti-proliferative effects, we focused our interest on S-adenosyl-l-methionine, a naturally occurring sulfur-containing nucleoside synthesized from adenosine triphosphate and methionine by methionine adenosyltransferase, and its potential in overcoming drug resistance in colon cancer cells devoid of p53. RESULTS: In the present study, we demonstrated that S-adenosyl-l-methionine overcomes uL3-mediated drug resistance in p53 deleted colon cancer cells. In particular, we demonstrated that S-adenosyl-l-methionine causes cell cycle arrest at the S phase; inhibits autophagy; augments reactive oxygen species; and induces apoptosis in these cancer cells. CONCLUSIONS: Results reported in this paper led us to propose S-adenosyl-l-methionine as a potential promising agent for cancer therapy by examining p53 and uL3 profiles in tumors to yield a better clinical outcomes.


Asunto(s)
Neoplasias del Colon , Resistencia a Antineoplásicos/efectos de los fármacos , Eliminación de Gen , Proteínas Ribosómicas/metabolismo , S-Adenosilmetionina/farmacología , Proteína p53 Supresora de Tumor/deficiencia , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Resistencia a Antineoplásicos/genética , Células HCT116 , Humanos , Proteína Ribosomal L3 , Proteínas Ribosómicas/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202711

RESUMEN

The present review summarizes the most recent studies focusing on the synergistic antitumor effect of the physiological methyl donor S-adenosylmethionine (AdoMet) in association with the main drugs used against breast cancer and head and neck squamous cell carcinoma (HNSCC), two highly aggressive and metastatic malignancies. In these two tumors the chemotherapy approach is recommended as the first choice despite the numerous side effects and recurrence of metastasis, so better tolerated treatments are needed to overcome this problem. In this regard, combination therapy with natural compounds, such as AdoMet, a molecule with pleiotropic effects on multiple cellular processes, is emerging as a suitable strategy to achieve synergistic anticancer efficacy. In this context, the analysis of studies conducted in the literature highlighted AdoMet as one of the most effective and promising chemosensitizing agents to be taken into consideration for inclusion in emerging antitumor therapeutic modalities such as nanotechnologies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama , Neoplasias de Cabeza y Cuello , S-Adenosilmetionina/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sinergismo Farmacológico , Femenino , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Metástasis de la Neoplasia , S-Adenosilmetionina/agonistas , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
12.
Stem Cells Int ; 2020: 8835813, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101420

RESUMEN

Beer is one of the most consumed alcoholic beverages in the world, rich in chemical compounds of natural origin with high nutritional and biological value. It is made up of water, barley malt, hops, and yeast. The main nutrients are carbohydrates, amino acids, minerals, vitamins, and other compounds such as polyphenols which are responsible for the many health benefits associated with this consumption of drinks. Hops and malt are one of the raw materials for beer and are a source of phenolic compounds. In fact, about 30% of the polyphenols in beer comes from hops and 70%-80% from malt. Natural compounds of foods or plants exert an important antioxidant activity, counteracting the formation of harmful free radicals. In the presence of an intense stressing event, cells activate specific responses to counteract cell death or senescence which is known to act as a key-task in the onset of age-related pathologies and in the loss of tissue homeostasis. Many studies have shown positive effects of natural compounds as beer polyphenols on biological systems. The main aims of our research were to determine the polyphenolic profile of three fractions, coming from stages of beer production, the mashing process (must), the filtration process (prehopping solution), and the boiling process with the addition of hops (posthopping solution), and to evaluate the effects of these fractions on Dental-derived Stem Cells (D-dSCs) and human intestinal epithelial lines (Caco-2 cells). Furthermore, we underline the bioavailability of beer fraction polyphenols by carrying out the in vitro intestinal absorption using the Caco-2 cell model. We found an antioxidant, proliferating, and antisenescent effects of the fractions deriving from the brewing process on D-dSCs and Caco-2 cells. Finally, our results demonstrated that the bioavailability of polyphenols is greater in beer than in the control standards used, supporting the future clinical application of these compounds as potential therapeutic tools in precision and translational medicine.

13.
Sci Rep ; 10(1): 15921, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985606

RESUMEN

Aberrant activation of epithelial-to-mesenchymal transition has been shown to correlate with triple-negative breast cancer (TNBC) progression and metastasis. Thus, the induction of the reverse process might offer promising opportunities to restrain TNBC metastatic spreading and related mortality. Recently, the Annurca apple polyphenol extract (APE) has been highlighted as a multi-faceted agent that selectively kills TNBC cells by ROS generation and sustained JNK activation. Here, by qualitatively and quantitatively monitoring the real-time movements of live cells we provided the first evidence that APE inhibited the migration of MDA-MB-231 and MDA-MB-468 TNBC cells and downregulated metalloproteinase-2 and metalloproteinase-9. In MDA-MB-231 cells APE decreased SMAD-2/3 and p-SMAD-2/3 levels, increased E-cadherin/N-cadherin protein ratio, induced the switch from N-cadherin to E-cadherin expression and greatly reduced vimentin levels. Confocal and scanning electron microscopy imaging of APE-treated MDA-MB-231 cells evidenced a significant cytoskeletal vimentin and filamentous actin reorganization and revealed considerable changes in cell morphology highlighting an evident transition from the mesenchymal to epithelial phenotype with decreased migratory features. Notably, all these events were reverted by N-acetyl-L-cysteine and JNK inhibitor SP600125 furnishing evidence that APE exerted its effects through the activation of ROS/JNK signaling. The overall data highlighted APE as a potential preventing agent for TNBC metastasis.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Ácido Clorogénico/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Flavonoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Taninos/farmacología , Apoptosis/efectos de los fármacos , Cadherinas/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Vimentina/metabolismo
14.
Int J Oncol ; 56(5): 1212-1224, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32319579

RESUMEN

S­Adenosyl­L­methionine (AdoMet) is the principal methyl donor in transmethylation reactions fundamental to sustaining epigenetic modifications. Over the past decade, AdoMet has been extensively investigated for its anti­proliferative, pro­apoptotic and anti­metastatic roles in several types of human cancer. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide, and is an aggressive type of cancer that is associated with a high recurrence rate, metastasis and poor treatment outcomes. The present study demonstrates, for the first time, to the best of our knowledge, that AdoMet induces cell cycle arrest and inhibits the migratory and invasive ability of two different HNSCC cell lines, oral Cal­33 and laryngeal JHU­SCC­011 cells. In both cell lines, AdoMet attenuated cell cycle progression, decreased the protein level of several cyclins and downregulated the expression of p21 cell cycle inhibitor. Moreover, AdoMet was able to inhibit Cal­33 and JHU­SCC­011 cell migration in a dose­dependent manner after 24 and 48 h, respectively, and also induced a significant reduction in the cell invasive ability, as demonstrated by Matrigel invasion assay monitored by the xCELLigence RTCA system. Western blot analysis of several migration and invasion markers confirmed the inhibitory effects exerted by AdoMet on these processes and highlighted AKT, ß­catenin and small mothers against decapentaplegic (SMAD) as the main signaling pathways modulated by AdoMet. The present study also demonstrated that the combination of AdoMet and cisplatin synergistically inhibited HNSCC cell migration. Taken together, these findings demonstrate that the physiological compound, AdoMet, affects the motility and extracellular matrix invasive capability in HNSCC. Thus, AdoMet may prove to be a good candidate for future drug development against metastatic cancer.


Asunto(s)
Cisplatino/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclinas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , S-Adenosilmetionina/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Humanos , Invasividad Neoplásica , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Factores de Tiempo
15.
J Struct Biol ; 210(1): 107462, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31962159

RESUMEN

Methionine adenosyltransferases catalyse the biosynthesis of S-adenosylmethionine, the primary methyl group donor in biochemical reactions, through the condensation of methionine and ATP. Here, we report the structural analysis of the Pyrococcus furiosus methionine adenosyltransferase (PfMAT) captured in the unliganded, substrate- and product-bound states. The conformational changes taking place during the enzymatic catalytic cycle are allosterically propagated by amino acid residues conserved in the archaeal orthologues to induce an asymmetric dimer structure. The distinct occupancy of the active sites within a PfMAT dimer is consistent with a half-site reactivity that is mediated by a product-induced negative cooperativity. The structures of intermediate states of PfMAT reported here suggest a distinct molecular mechanism for S-adenosylmethionine synthesis in Archaea, likely consequence of the evolutionary pressure to achieve protein stability under extreme conditions.


Asunto(s)
Metionina Adenosiltransferasa/metabolismo , Pyrococcus furiosus/enzimología , Sitios de Unión , Catálisis , Cristalografía por Rayos X/métodos , Metionina Adenosiltransferasa/química , Conformación Proteica , Pyrococcus furiosus/metabolismo
16.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396625

RESUMEN

Triple-negative breast cancer (TNBC) is one of the most common malignancies worldwide and shows maximum invasiveness and a high risk of metastasis. Recently, many natural compounds have been highlighted as a valuable source of new and less toxic drugs to enhance breast cancer therapy. Among them, S-adenosyl-L-methionine (AdoMet) has emerged as a promising anti-cancer agent. MicroRNA (miRNA or miR)-based gene therapy provides an interesting antitumor approach to integrated cancer therapy. In this study, we evaluated AdoMet-induced modulation of miRNA-34c and miRNA-449a expression in MDA-MB-231 and MDA-MB-468 TNBC cells. We demonstrated that AdoMet upregulates miR-34c and miR-449a expression in both cell lines. We found that the combination of AdoMet with miR-34c or miR-449a mimic strongly potentiated the pro-apoptotic effect of the sulfonium compound by a caspase-dependent mechanism. For the first time, by video time-lapse microscopy, we showed that AdoMet inhibited the in vitro migration of MDA-MB-231 and MDA-MB-468 cells and that the combination with miR-34c or miR-449a mimic strengthened the effect of the sulfonium compound through the modulation of ß-catenin and Small Mother Against Decapentaplegic (SMAD) signaling pathways. Our results furnished the first evidence that AdoMet exerts its antitumor effects in TNBC cells through upregulating the expression of miR-34c and miR-449a.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , MicroARNs/genética , S-Adenosilmetionina/farmacología , Neoplasias de la Mama Triple Negativas/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba/efectos de los fármacos
17.
Curr Top Med Chem ; 19(31): 2816-2823, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31755392

RESUMEN

BACKGROUND: microRNAs play a critical role in auto-immunity, cell proliferation, differentiation and cell death. miRNAs are present in all biological fluids, and their expression is essential in maintaining regular immune functions and preventing autoimmunity, whereas miRNA dysregulation may be associated with the pathogenesis of autoimmune and inflammatory diseases. Oral lichen planus (OLP) is an inflammatory disease mediated by cytotoxic T cells attack against epithelial cells. The present study aims to perform a specific microRNA expression profile through the analysis of saliva in this disease. METHODS: The study group was formed by five patients (mean age 62.8±1.98 years; 3 females/2 males) affected by oral lichen planus and control group by five healthy subjects (mean age 59.8 years±2.3; 3 females/ 2 males); using a low-density microarray analysis, we recorded a total of 98 differentially expressed miRNAs in the saliva of patients with oral lichen planus compared to the control group. The validation was performed for miR-27b with qRT-PCR in all saliva samples of oral lichen planus group. RESULTS: 89 miRNAs were up-regulated and nine down-regulated. In details, levels of miR-21, miR- 125b, miR-203 and miR15b were increased (p<0.001) in study group while levels of miR-27b were about 3.0-fold decreased compared to controls (p<0.001) of miR-27b expression in OLP saliva. QRTPCR validation confirmed the down regulation of miR-27b in all saliva samples. CONCLUSION: Collecting saliva samples is a non-invasive procedure and is well accepted by all patients. microRNAs can be readily isolated and identified and can represent useful biomarkers of OLP.


Asunto(s)
Liquen Plano Oral/genética , MicroARNs/genética , Saliva/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , MicroARNs/química , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Sci Rep ; 9(1): 13045, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506575

RESUMEN

Polyphenols represent the most studied class of nutraceuticals that can be therapeutics for a large spectrum of diseases, including cancer. In this study, we investigated for the first time the antitumor activities of polyphenol extract from Annurca apple (APE) in MDA-MB-231 triple negative breast cancer cells, and we explored the underlying mechanisms. APE selectively inhibited MDA-MB-231 cell viability and caused G2/M phase arrest associated with p27 and phospho-cdc25C upregulation and with p21 downregulation. APE promoted reactive oxygen species (ROS) generation in MDA-MB-231 cells while it acted as antioxidant in non-tumorigenic MCF10A cells. We demonstrated that ROS generation represented the primary step of APE antitumor activity as pretreatment with antioxidant N-acetylcysteine (NAC) prevented APE-induced G2/M phase arrest, apoptosis, and autophagy. APE downregulated Dusp-1 and induced a significant increase in JNK/c-Jun phosphorylation that were both prevented by NAC. Moreover, downregulation of JNK by its specific inhibitor SP600125 significantly diminished the anticancer activity of APE indicating that ROS generation and sustained JNK activation represented the main underlying mechanism of APE-induced cell death. APE also inhibited AKT activation and downregulated several oncoproteins, such as NF-kB, c-myc, and ß-catenin. In light of these results, APE may be an attractive candidate for drug development against triple negative breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ácido Clorogénico/farmacología , Flavonoides/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Taninos/farmacología , Antioxidantes/metabolismo , Apoptosis , Autofagia , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas , Transducción de Señal/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
19.
Int J Mol Sci ; 20(14)2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336999

RESUMEN

Head and neck carcinoma (HNC) is a heterogeneous disease encompassing a variety of tumors according to the origin. Laryngeal cancer (LC) represents one of the most frequent tumors in the head and neck region. Despite clinical studies and advance in treatment, satisfactory curative strategy has not yet been reached. Therefore, there is an urgent need for the identification of specific molecular signatures that better predict the clinical outcomes and markers that serve as suitable therapeutic targets. Long non-coding RNAs (lncRNA) are reported as important regulators of gene expression and represent an innovative pharmacological application as molecular biomarkers in cancer. The purpose of this review is to discuss the most relevant epigenetic and histological prognostic biomarkers in HNC, with particular focus on LC. We summarize the emerging roles of long non-coding RNAs in HNC and LC development and their possible use in early diagnosis.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de Cabeza y Cuello/genética , Neoplasias Laríngeas/genética , ARN Largo no Codificante/genética , Animales , Línea Celular Tumoral , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/mortalidad , Neoplasias Laríngeas/patología , Anotación de Secuencia Molecular , Pronóstico , Interferencia de ARN
20.
J Cell Physiol ; 234(8): 13277-13291, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30575033

RESUMEN

S-Adenosyl-l-methionine (AdoMet) is a naturally and widely occurring sulfonium compound that plays a primary role in cell metabolism and acts as the principal methyl donor in many methylation reactions. AdoMet also exhibits antiproliferative and proapoptotic activities in different cancer cells. However, the molecular mechanisms underlying the effects exerted by AdoMet have only been partially studied. In the current study, we evaluated the antiproliferative effect of AdoMet on Cal-33 oral and JHU-SCC-011 laryngeal squamous cancer cells to define the underlying mechanisms. We demonstrated that AdoMet induced apoptosis in Cal-33 and JHU-SCC-011 cells, involving a caspase-dependent mechanism paralleled by an increased Bax/Bcl-2 ratio. Moreover, we showed, for the first time, that AdoMet induced ER-stress in Cal-33 cells and activated the unfolded protein response, which can be responsible for apoptosis induction through the activation of CHOP and JNK. In addition, AdoMet-induced ER-stress was followed by autophagy with a consistent increase in the levels of the autophagic marker LC3B-II, which was indeed potentiated by the autophago-lysosome inhibitor chloroquine. As both escape from apoptosis and decreased activation of JNK are mechanisms of resistance to cisplatin (cDPP), an agent usually used in cancer therapy, we have evaluated the effects of AdoMet in combination with cDPP on Cal-33 cells. Our data showed that the combined treatment resulted in a strong synergism in inhibiting cell proliferation and in enhancing apoptosis via intrinsic mechanism. These results demonstrate that AdoMet has ER-stress-mediated antiproliferative activity and synergizes with cDDP on cell growth inhibition, thus providing the basis for its use in new anticancer strategies.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , S-Adenosilmetionina/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...