Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7890, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256361

RESUMEN

Passive solar membrane distillation (MD) is an emerging technology to alleviate water scarcity. Recently, its performance has been enhanced by multistage design, though the gains are marginal due to constrained temperature and vapor pressure gradients across the device. This makes condenser cooling enhancement a questionable choice. We argue that condenser heating could suppress the marginal effect of multistage solar MD by unlocking the moisture transport limit in all distillation stages. Here, we propose a stage temperature boosting (STB) concept that directs low-temperature heat to the condensers in the last stages, enhancing moisture transport across all stages. Through STB in the last two stages with a heat flux of 250 W m-2, a stage-averaged distillation flux of 1.13 L m-2 h-1 S-1 was demonstrated using an 8-stage MD device under one-sun illumination. This represents an 88% enhancement over the state-of-the-art 10-stage solar MD devices. More notably, our analysis indicates that 16-stage STB-MD devices driven by solar energy and waste heat can effectively compete with existing photovoltaic reverse osmosis (PV-RO) systems, potentially elevating freshwater production with low-temperature heat sources.

2.
Science ; 380(6644): 458-459, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141359

RESUMEN

Dual-use devices offer a different path for more-sustainable living.

3.
Adv Mater ; 35(35): e2302038, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37199373

RESUMEN

Sorption-based atmospheric water harvesting (AWH) is a promising approach for mitigating worldwide water scarcity. However, reliable water supply driven by sustainable energy regardless of diurnal variation and weather remains a long-standing challenge. To address this issue, a polyelectrolyte hydrogel sorbent with an optimal hybrid-desorption multicyclic-operation strategy is proposed, achieving all-day AWH and a significant increase in daily water production. The polyelectrolyte hydrogel possesses a large interior osmotic pressure of 659 atm, which refreshes sorption sites by continuously migrating the sorbed water within its interior, and thus enhancing sorption kinetics. The charged polymeric chains coordinate with hygroscopic salt ions, anchoring the salts and preventing agglomeration and leakage, thereby enhancing cyclic stability. The hybrid desorption mode, which couples solar energy and simulated waste heat, introduces a uniform and adjustable sorbent temperature for achieving all-day ultrafast water release. With rapid sorption-desorption kinetics, an optimization model suggests that eight moisture capture-release cycles are capable of achieving high water yield of 2410 mLwater kgsorbent -1 day-1 , up to 3.5 times that of single-cyclic non-hybrid modes. The polyelectrolyte hydrogel sorbent and the coupling with sustainable energy driven desorption mode pave the way for the next-generation AWH systems, significantly bringing freshwater on a multi-kilogram scale closer.

4.
Adv Sci (Weinh) ; 9(33): e2204724, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209387

RESUMEN

Sorption-based atmospheric water harvesting (SAWH) holds huge potential due to its freshwater capabilities for alleviating water scarcity stress. The two essential parts, sorbent material and system structure, dominate the water sorption-desorption performance and the total water productivity for SAWH system together. Attributed to the superiorities in aspects of sorption-desorption performance, scalability, and compatibility in practical SAWH devices, hygroscopic porous polymers (HPPs) as next-generation sorbents are recently going through a vast surge. However, as HPPs' sorption mechanism, performance, and applied potential lack comprehensive and accurate guidelines, SAWH's subsequent development is restricted. To address the aforementioned problems, this review introduces HPPs' recent development related to mechanism, performance, and application. Furthermore, corresponding optimized strategies for both HPP-based sorbent bed and coupling structural design are proposed. Finally, original research routes are directed to develop next-generation HPP-based SAWH systems. The presented guidelines and insights can influence and inspire the future development of SAWH technology, further achieving SAWH's practical applications.


Asunto(s)
Polímeros , Agua , Agua/química , Adsorción , Porosidad
5.
Nat Commun ; 13(1): 5406, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109494

RESUMEN

Sorption-based atmospheric water harvesting has the potential to realize water production anytime, anywhere, but reaching a hundred-gram high water yield in semi-arid climates is still challenging, although state-of-the-art sorbents have been used. Here, we report a portable and modularized water harvester with scalable, low-cost, and lightweight LiCl-based hygroscopic composite (Li-SHC) sorbents. Li-SHC achieves water uptake capacity of 1.18, 1.79, and 2.93 g g-1 at 15%, 30%, and 60% RH, respectively. Importantly, considering the large mismatch between water capture and release rates, a rationally designed batch processing mode is proposed to pursue maximum water yield in a single diurnal cycle. Together with the advanced thermal design, the water harvester shows an exceptional water yield of 311.69 g day-1 and 1.09 g gsorbent-1 day-1 in the semi-arid climate with the extremely low RH of ~15%, demonstrating the adaptability and possibility of achieving large-scale and reliable water production in real scenarios.


Asunto(s)
Clima Desértico , Agua
6.
iScience ; 25(1): 103565, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35024576

RESUMEN

Condensation of humid air is an important process in thermal and process engineering and a subject of many currently research-intensive scientific domains, such as atmospheric water harvesting and seawater desalination. The nature of (water) vapor condensation in the presence of non-condensable gas (NCG) such as air differs significantly from the case with the pure, quiescent vapor condensation. In the literature, simple models that describe the forced flow condensation of water vapor in the presence of air on a series of vertical flat plates are hard to find. Here we present a simple and computationally efficient semi-empirical correlation describing forced flow condensation from humid air inside vertical channels formed by flat plates. The correlation accounts air as a non-condensing gas, different heights of vertical plates, and different thermal-hydraulic parameters. The correlation has been experimentally validated and shows excellent agreement, as 90% of theoretically predicted values are within ±12% of experimental data.

7.
Entropy (Basel) ; 23(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396854

RESUMEN

The main research objective of this paper was to compare exergy performance of three different heat pump (HP)-based systems and one natural gas (NG)-based system for the production of heating and cooling energy in a single-house dwelling. The study considered systems based on: 1. A NG and auxiliary cooling unit; 2. Solely HP, 3. HP with additional seasonal heat storage (SHS) and a solar thermal collector (STC); 4. HP with SHS, a STC and a grey water (GW) recovery unit. The assessment of exergy efficiencies for each case was based on the transient systems simulation program TRNSYS, which was used for the simulation of energy use for space heating and cooling of the building, sanitary hot water production, and the thermal response of the seasonal heat storage and solar thermal system. The results show that an enormous waste of exergy is observed by the system based on an NG boiler (with annual overall exergy efficiency of 0.11) in comparison to the most efficient systems, based on HP water-water with a seasonal heat storage and solar thermal collector with the efficiency of 0.47. The same system with an added GW unit exhibits lower water temperatures, resulting in the exergy efficiency of 0.43. The other three systems, based on air-, water-, and ground-water HPs, show significantly lower annual source water temperatures (10.9, 11.0, 11.0, respectively) compared to systems with SHS and SHS + GW, with temperatures of 28.8 and 19.3 K, respectively.

8.
Entropy (Basel) ; 21(4)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33267102

RESUMEN

This paper presents an exergy-efficiency analysis of low-temperature district heating systems (DHSs) with different sanitary hot-water (SHW) boosters. The required temperature of the sanitary hot water (SHW) was set to 50 °C. The main objective of this study was to compare the exergy efficiencies of a DHS without a booster to DHSs with three different types of boosters, i.e., electric-, gas-boiler- and heat-pump-based, during the winter and summer seasons. To achieve this, we developed a generalized model for the calculation of the exergy efficiency of a DHS with or without the booster. The results show that during the winter season, for a very low relative share of SHW production, the DHS without the booster exhibits favorable exergy efficiencies compared to the DHSs with boosters. By increasing this share, an intersection point above 45 °C for the supply temperatures, at which the higher exergy efficiency of a DHS with a booster prevails, can be identified. In the summer season the results show that a DHS without a booster at a supply temperature above 70 °C achieves lower exergy efficiencies compared to DHSs with boosters at supply temperatures above 40 °C. The results also show that ultra-low supply and return temperatures should be avoided for the DHSs with boosters, due to higher rates of entropy generation.

9.
Scoliosis ; 10: 25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26330889

RESUMEN

BACKGROUND: The main purpose of this research was to develop a new method for differentiating between scoliotic and healthy subjects by analysing the curvatures of their spines in the cranio-caudal view. METHODS: The study included 247 subjects with physiological curvatures of the spine and 28 subjects with clinically confirmed scoliosis. The curvature of the spine was determined by a computer analysis of the surface of the back, measured with a non-invasive, 3D, laser-triangulation system. The determined spinal curve was represented in the transversal plane, which is perpendicular to the line segment that was defined by the initial point and the end point of the spinal curve. This was achieved using a rotation matrix. The distances between the extreme points in the antero-posterior (AP) and left-right (LR) views were calculated in relation to the length of the spine as well as the quotient of these two values LR/AP. All the measured parameters were compared between the scoliotic and control groups using the Student's t-Test in case of normal data and Kruskal-Wallis test in case of non-normal data. Besides, a comprehensive diagram representing the distances between the extreme points in the AP and LR views was introduced, which clearly demonstrated the direction and the size of the thoracic and lumbar spinal curvatures for each individual subject. RESULTS: While the distances between the extreme points of the spine in the AP view were found to differ only slightly between the groups (p = 0.1), the distances between the LR extreme points were found to be significantly greater in the scoliosis group, compared to the control group (p < 0.001). The quotient LR/AP was statistically significantly different in both groups (p < 0.001). CONCLUSIONS: The main innovation of the presented method is the ability to differentiate a scoliotic subject from a healthy subject by assessing the curvature of the spine in the cranio-caudal view. Therefore, the proposed method could be useful for human posture diagnostics as well as to provide a long-term monitoring of scoliotic spine curvatures in preventive and curative clinical practice at all levels of health care.

10.
BMC Med Imaging ; 15: 2, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25651841

RESUMEN

BACKGROUND: The main objective of the present method was to automatically obtain a spatial curve of the thoracic and lumbar spine based on a 3D shape measurement of a human torso with developed scoliosis. Manual determination of the spine curve, which was based on palpation of the thoracic and lumbar spinous processes, was found to be an appropriate way to validate the method. Therefore a new, noninvasive, optical 3D method for human torso evaluation in medical practice is introduced. METHODS: Twenty-four patients with confirmed clinical diagnosis of scoliosis were scanned using a specially developed 3D laser profilometer. The measuring principle of the system is based on laser triangulation with one-laser-plane illumination. The measurement took approximately 10 seconds at 700 mm of the longitudinal translation along the back. The single point measurement accuracy was 0.1 mm. Computer analysis of the measured surface returned two 3D curves. The first curve was determined by manual marking (manual curve), and the second was determined by detecting surface curvature extremes (automatic curve). The manual and automatic curve comparison was given as the root mean square deviation (RMSD) for each patient. The intra-operator study involved assessing 20 successive measurements of the same person, and the inter-operator study involved assessing measurements from 8 operators. RESULTS: The results obtained for the 24 patients showed that the typical RMSD between the manual and automatic curve was 5.0 mm in the frontal plane and 1.0 mm in the sagittal plane, which is a good result compared with palpatory accuracy (9.8 mm). The intra-operator repeatability of the presented method in the frontal and sagittal planes was 0.45 mm and 0.06 mm, respectively. The inter-operator repeatability assessment shows that that the presented method is invariant to the operator of the computer program with the presented method. CONCLUSIONS: The main novelty of the presented paper is the development of a new, non-contact method that provides a quick, precise and non-invasive way to determine the spatial spine curve for patients with developed scoliosis and the validation of the presented method using the palpation of the spinous processes, where no harmful ionizing radiation is present.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Rayos Láser , Vértebras Lumbares/patología , Escoliosis/patología , Vértebras Torácicas/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...