Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985515

RESUMEN

Over the past decades, 2(5H)-furanone derivatives have been extensively studied because of their promising ability to prevent the biofilm formation by various pathogenic bacteria. Here, we report the synthesis of a series of optically active sulfur-containing 2(5H)-furanone derivatives and characterize their biological activity. Novel thioethers were obtained by an interaction of stereochemically pure 5-(l)-menthyloxy- or 5-(l)-bornyloxy-2(5H)-furanones with aromatic thiols under basic conditions. Subsequent thioethers oxidation by an excess of hydrogen peroxide in acetic acid resulted in the formation of the corresponding chiral 2(5H)-furanone sulfones. The structure of synthesized compounds was confirmed by IR and NMR spectroscopy, HRMS, and single crystal X-ray diffraction. The leading compound, 26, possessing the sulfonyl group and l-borneol moiety, exhibited the prominent activity against Staphylococcus aureus and Bacillus subtilis with MICs of 8 µg/mL. Furthermore, at concentrations of 0.4-0.5 µg/mL, the sulfone 26 increased two-fold the efficacy of aminoglycosides gentamicin and amikacin against S. aureus. The treatment of the model-infected skin wound in the rat with a combination of gentamicin and sulfone 26 speeded up the bacterial decontamination and improved the healing of the wound. The presented results provide valuable new insights into the chemistry of 2(5H)-furanone derivatives and associated biological activities.


Asunto(s)
Bacterias , Staphylococcus aureus , Ratas , Animales , Antibacterianos/farmacología , Antibacterianos/química , Amicacina , Gentamicinas , Furanos/química
2.
Int J Biol Macromol ; 164: 4205-4217, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916198

RESUMEN

Biofouling is among the key factors slowing down healing of acute and chronic wounds. Here we report both anti-biofilm and wound-healing properties of the chitosan-immobilized Ficin. The proposed chitosan-adsorption approach allowed preserving ~90% of the initial total activity of the enzyme (when using azocasein as a substrate) with stabilization factor of 4.9, and ~70% of its specific enzymatic activity. In vitro, the chitosan-immobilized Ficin degraded staphylococcal biofilms, this way increasing the efficacy of antimicrobials against biofilm-embedded bacteria. In vivo, in the presence of Ficin (either soluble or immobilized), the S.aureus-infected skin wound areas in rats reduced twofold after 4 instead of 6 days treatment. Moreover, topical application of the immobilized enzyme resulted in a 3-log reduction of S. aureus cell count on the wound surfaces in 6 days, compared to more than 10 days required to achieve the same effect in control. Additional advantages include smoother reepithelisation, and new tissue formation exhibiting collagen structure characteristics closely reminiscent of those observed in the native tissue. Taken together, our data suggest that both soluble and immobilized Ficin appear beneficial for the treatment of biofilm-associated infections, as well as speeding up wound healing and microbial decontamination.


Asunto(s)
Biopelículas/efectos de los fármacos , Quitosano/química , Enzimas Inmovilizadas , Ficaína/química , Ficaína/farmacología , Cicatrización de Heridas/efectos de los fármacos , Portadores de Fármacos/química , Concentración de Iones de Hidrógeno , Cinética , Pruebas de Sensibilidad Microbiana , Proteolisis , Solubilidad , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...