Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 13(19)2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33023124

RESUMEN

Calcium phosphate (CaP) materials do not always induce ectopic vascularization and bone formation; the reasons remain unclear, and there are active discussions of potential roles for post-implantation hematoma, circulating immune and stem cells, and pericytes, but studies on adipose-derived stem cells (AMSCs) in this context are lacking. The rough (average surface roughness Ra = 2-5 µm) scaffold-like CaP coating deposited on pure titanium plates by the microarc oxidation method was used to investigate its subcutaneous vascularization in CBA/CaLac mice and in vitro effect on cellular and molecular crosstalk between human blood mononuclear cells (hBMNCs) and AMSCs (hAMSCs). Postoperative hematoma development on the CaP surface lasting 1-3 weeks may play a key role in the microvessel elongation and invasion into the CaP relief at the end of the 3rd week of injury and BMNC migration required for enhanced wound healing in mice. Satisfactory osteogenic and chondrogenic differentiation but poor adipogenic differentiation of hAMSCs on the rough CaP surface were detected in vitro by differential cell staining. The fractions of CD73+ (62%), CD90+ (0.24%), and CD105+ (0.41%) BMNCs may be a source of autologous circulating stem/progenitor cells for the subcutis reparation, but allogenic hBMNC participation is mainly related to the effects of CD4+ T cells co-stimulated with CaP coating on the in vitro recruitment of hAMSCs, their secretion of angiogenic and osteomodulatory molecules, and the increase in osteogenic features within the period of in vivo vascularization. Cellular and molecular crosstalk between BMNCs and AMSCs is a model of effective subcutis repair. Rough CaP surface enhanced angio- and osteogenic signaling between cells. We believe that preconditioning and/or co-transplantation of hAMSCs with hBMNCs may broaden their potential in applications related to post-implantation tissue repair and bone bioengineering caused by microarc CaP coating.

2.
Materials (Basel) ; 13(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992463

RESUMEN

Calcium phosphate (CaP) materials are among the best bone graft substitutes, but their use in the repair of damaged bone in tumor patients is still unclear. The human Jurkat T lymphoblast leukemia-derived cell line (Jurkat T cells) was exposed in vitro to a titanium (Ti) substrate (10 × 10 × 1 mm3) with a bilateral rough (average roughness index (Ra) = 2-5 µm) CaP coating applied via the microarc oxidation (MAO) technique, and the morphofunctional response of the cells was studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscope (EDX) analyses showed voltage-dependent (150-300 V) growth of structural (Ra index, mass, and thickness) and morphological surface and volume elements, a low Ca/PaT ratio (0.3-0.6), and the appearance of crystalline phases of CaHPO4 (monetite) and ß-Ca2P2O7 (calcium pyrophosphate). Cell and molecular reactions in 2-day and 14-day cultures differed strongly and correlated with the Ra values. There was significant upregulation of hTERT expression (1.7-fold), IL-17 secretion, the presentation of the activation antigens CD25 (by 2.7%) and CD95 (by 5.15%) on CD4+ cells, and 1.5-2-fold increased cell apoptosis and necrosis after two days of culture. Hyperactivation-dependent death of CD4+ cells triggered by the surface roughness of the CaP coating was proposed. Conversely, a 3.2-fold downregulation in hTERT expression increased the percentages of CD4+ cells and their CD95+ subset (by 15.5% and 22.9%, respectively) and inhibited the secretion of 17 of 27 test cytokines/chemokines without a reduction in Jurkat T cell survival after 14 days of coculture. Thereafter, cell hypoergy and the selection of an hTERT-independent viable CD4+ subset of tumor cells were proposed. The possible role of negative zeta potentials and Ca2+ as effectors of CaP roughness was discussed. The continuous (2-14 days) 1.5-6-fold reductions in the secretion of vascular endothelial growth factor (VEGF) by tumor cells correlated with the Ra values of microarc CaP-coated Ti substrates seems to limit surgical stress-induced metastasis of lymphoid malignancies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...