Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 180(15): 1965-1980, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36780899

RESUMEN

BACKGROUND AND PURPOSE: Chronic heart failure, a progressive disease with limited treatment options currently available, especially in heart failure with preserved ejection fraction (HFpEF), represents an unmet medical need as well as an economic burden. The development of a novel therapeutic to slow or reverse disease progression would be highly impactful to patients and society. Relaxin-2 (relaxin) is a human hormone regulating cardiovascular, renal, and pulmonary adaptations during pregnancy. A short-acting recombinant relaxin, Serelaxin, demonstrated short-term heart failure symptom relief and biomarker improvement in acute heart failure trials. Here, we present the development of a long-acting relaxin analogue to be tested in the treatment of chronic heart failure. EXPERIMENTAL APPROACH: LY3540378 is a long-acting protein therapeutic composed of a human relaxin analogue and a serum albumin-binding VHH domain. KEY RESULTS: LY3540378 is a potent agonist of the relaxin family peptide receptor 1 (RXFP1) and maintains selectivity against RXFP2/3/4 comparable to native relaxin. The half-life of LY3540378 in preclinical species is extended through high affinity binding of the albumin-binding VHH domain to serum albumin. When tested in a single dose administration, LY3540378 elicited relaxin-mediated pharmacodynamic responses, such as reduced serum osmolality and increased renal blood flow in rats. In an isoproterenol-induced cardiac hypertrophy mouse model, treatment with LY3540378 significantly reduced cardiac hypertrophy and improved isovolumetric relaxation time. In a monkey cardiovascular safety study, there were no adverse observations from administration of LY3540378. CONCLUSION AND IMPLICATIONS: LY3540378 demonstrated to be a suitable clinical development candidate, and is progressing in clinical trials.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Relaxina , Animales , Femenino , Humanos , Ratones , Embarazo , Ratas , Cardiomegalia/tratamiento farmacológico , Cardiopatías/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Relaxina/farmacología , Relaxina/uso terapéutico , Relaxina/metabolismo , Volumen Sistólico
2.
Front Physiol ; 11: 543727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013477

RESUMEN

Regulation of the peripheral vascular resistance via modulating the vessel diameter has been considered as a main determinant of the arterial blood pressure. Phosphodiesterase enzymes (PDE1-11) hydrolyse cyclic nucleotides, which are key players controlling the vessel diameter and, thus, peripheral resistance. Here, we have tested and reported the effects of a novel selective PDE1 inhibitor (BTTQ) on the cardiovascular system. Normal Sprague Dawley, spontaneously hypertensive (SHR), and Dahl salt-sensitive rats were used to test in vivo the efficacy of the compound. Phosphodiesterase radiometric enzyme assay revealed that BTTQ inhibited all three isoforms of PDE1 in nanomolar concentration, while micromolar concentrations were needed to induce effective inhibition for other PDEs. The myography study conducted on mesenteric arteries revealed a potent vasodilatory effect of the drug, which was confirmed in vivo by an increase in the blood flow in the rat ear arteriols reflected by the rise in the temperature. Furthermore, BTTQ proved a high efficacy in lowering the blood pressure about 9, 36, and 24 mmHg in normal Sprague Dawley, SHR and, Dahl salt-sensitive rats, respectively, compared to the vehicle-treated group. Moreover, additional blood pressure lowering of about 22 mmHg could be achieved when BTTQ was administered on top of ACE inhibitor lisinopril, a current standard of care in the treatment of hypertension. Therefore, PDE1 inhibition induced efficient vasodilation that was accompanied by a significant reduction of blood pressure in different hypertensive rat models. Administration of BTTQ was also associated with increased heart rate in both models of hypertension as well as in the normotensive rats. Thus, PDE1 appears to be an attractive therapeutic target for the treatment of resistant hypertension, while tachycardia needs to be addressed by further compound structural optimization.

3.
PLoS One ; 14(8): e0220788, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31461445

RESUMEN

INTRODUCTION: Current treatments for overactive bladder (OAB) are often discontinued due to side effects or lack of efficacy. The goal of this study was to determine if combining a phosphodiesterase type 4 inhibitor (PDE4i); with a type 5 inhibitor (PDE5i); would have a beneficial effect on OAB symptoms and if a reduced dose of PDE4i in combination with PDE5i could also provide a beneficial effect in OAB. We hypothesized that PDE5i and PDE4i combination treatment could be utilized to reduce non-voiding contractions and smooth muscle disruption in a rat model of OAB. METHODS: Fifty-eight age-matched Sprague-Dawley rats underwent PBOO and daily gavage with PDE4i alone (roflumilast; 1mg/kg), PDE5i alone (tadalafil;10mg/kg), high dose combination (PDE4i 1mg/kg, PDE5i 10mg/kg), low dose combination (PDE4i 0.2mg/kg, PDE5i 10mg/kg), or vehicle for 28 days. Fourteen animals underwent sham PBOO with vehicle. Rats underwent conscious and anesthetized cystometry 28 days after PBOO and were euthanized for qualitative bladder histology. One-way ANOVA on ranks with a Dunn's post hoc test was used to indicate statistically significant differences between groups (p<0.05). RESULTS: Bladder & urethral weight was significantly increased after PBOO with vehicle, PDE4i alone, and PDE5i alone, but not with either combination treatment. Frequency of non-voiding contractions during both conscious and anesthetized cystometry increased significantly after PBOO with vehicle, but not after PDE4i or high dose combination treatments compared to sham PBOO. Threshold pressure for voiding was significantly decreased with high dose combination compared to vehicle. PBOO treated with PDE4i alone or high dose combination showed less bladder smooth muscle fibrosis than vehicle, PDE5i alone, or low dose combination treatments. CONCLUSION: A PDE4i and PDE5i combination treatment has potential benefit in reducing OAB symptoms, but future research is needed.


Asunto(s)
Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Animales , Quimioterapia Combinada , Femenino , Contracción Muscular/efectos de los fármacos , Ratas Sprague-Dawley , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/fisiopatología , Vejiga Urinaria Hiperactiva/fisiopatología , Micción/efectos de los fármacos
4.
Endocrinology ; 152(5): 1767-78, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21343258

RESUMEN

We compared teriparatide (TPTD) and strontium ranelate (SR) efficacy on bone formation activity in a mature rat model of estrogen-deficiency bone loss. Rats were ovariectomized (OVX) at age 6 months and permitted to lose bone for 2 months to establish osteopenia before initiation of treatment with TPTD (5 or 15 µg/kg · d sc) or SR (150 or 450 mg/kg · d oral gavage). After 3 wk, RT-PCR analyses of bone formation genes in the distal femur metaphysis showed significant elevation of collagen 1α2, osteocalcin, bone sialoprotein, alkaline phosphatase, and Runx2 gene expression at both TPTD doses, relative to OVX controls. SR had no significant effect on expression of these genes. TPTD treatment for 12 wk dose dependently increased lumbar vertebral (LV) and femoral midshaft bone mineral content (BMC) and bone mineral density over pretreatment and age-matched OVX controls. SR 150 increased BMC, and SR 450 increased BMC and bone mineral density of femoral midshaft and LV over OVX controls. There were significant dose-dependent TPTD increases of LV and femoral neck strength, and TPTD 15 also increased midshaft strength compared with pretreatment and age-matched OVX controls. SR did not enhance bone strength relative to pretreatment or age-matched OVX controls. Histomorphometry of the proximal tibial metaphysis showed dose-dependent effects of TPTD on trabecular area, number, width, and osteoblast surface, bone mineralizing surface, and bone formation rate relative to pretreatment and age-matched OVX controls, whereas SR had no effect on these parameters. These findings confirmed the bone anabolic efficacy of teriparatide, but not SR in mature, osteopenic, OVX rats.


Asunto(s)
Enfermedades Óseas Metabólicas/prevención & control , Huesos/efectos de los fármacos , Ovariectomía , Teriparatido/farmacología , Fosfatasa Alcalina/genética , Anabolizantes/farmacología , Animales , Densidad Ósea/efectos de los fármacos , Conservadores de la Densidad Ósea/farmacología , Enfermedades Óseas Metabólicas/sangre , Enfermedades Óseas Metabólicas/patología , Huesos/metabolismo , Huesos/patología , Colágeno Tipo I/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Relación Dosis-Respuesta a Droga , Femenino , Fémur/efectos de los fármacos , Fémur/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Sialoproteína de Unión a Integrina/genética , Vértebras Lumbares/efectos de los fármacos , Vértebras Lumbares/metabolismo , Compuestos Organometálicos/farmacología , Osteocalcina/sangre , Osteocalcina/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiofenos/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA