Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes Chromosomes Cancer ; 62(3): 121-130, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36326821

RESUMEN

Tumor mutational burden (TMB), measured by exome or panel sequencing of tumor tissue or blood (bTMB), is a potential predictive biomarker for treatment benefit in patients with various cancer types receiving immunotherapy targeting checkpoint pathways. However, significant variability in TMB measurement has been observed. We developed contrived bTMB reference materials using DNA from tumor cell lines and donor-matched lymphoblastoid cell lines to support calibration and alignment across laboratories and platforms. Contrived bTMB reference materials were developed using genomic DNA from lung tumor cell lines blended into donor-matched lymphoblastoid cell lines at 0.5% and 2% tumor content, fragmented and size-selected to mirror the size profile of circulating cell-free tumor DNA with TMB scores of 7, 9, 20, and 26 mut/Mb. Variant allele frequency (VAF) and bTMB scores were assessed using PredicineATLAS and GuardantOMNI next-generation sequencing assays. DNA fragment sizes in the contrived reference samples were similar to those found within patient plasma-derived cell-free DNA, and mutational patterns aligned with those in the parental tumor lines. For the 7, 20, and 26 mut/Mb contrived reference samples with 2% tumor content, bTMB scores estimated using either assay aligned with expected scores from the parental tumor cell lines and showed good reproducibility. A bioinformatic filtration step was required to account for low-VAF artifact variants. We demonstrate the feasibility and challenges of producing and using bTMB reference standards across a range of bTMB levels, and how such standards could support the calibration and validation of bTMB platforms and help harmonization between panels and laboratories.


Asunto(s)
Neoplasias Pulmonares , Neoplasias , Humanos , Reproducibilidad de los Resultados , Neoplasias/genética , Mutación , Inmunoterapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Pulmonares/genética
2.
Nat Commun ; 13(1): 142, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013231

RESUMEN

The establishment of cell identity during embryonic development involves the activation of specific gene expression programmes and is underpinned by epigenetic factors including DNA methylation and histone post-translational modifications. G-quadruplexes are four-stranded DNA secondary structures (G4s) that have been implicated in transcriptional regulation and cancer. Here, we show that G4s are key genomic structural features linked to cellular differentiation. We find that G4s are highly abundant in human embryonic stem cells and are lost during lineage specification. G4s are prevalent in enhancers and promoters. G4s that are found in common between embryonic and downstream lineages are tightly linked to transcriptional stabilisation of genes involved in essential cellular functions as well as transitions in the histone post-translational modification landscape. Furthermore, the application of small molecules that stabilise G4s causes a delay in stem cell differentiation, keeping cells in a more pluripotent-like state. Collectively, our data highlight G4s as important epigenetic features that are coupled to stem cell pluripotency and differentiation.


Asunto(s)
Linaje de la Célula/genética , Epigénesis Genética , G-Cuádruplex , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes/metabolismo , Procesamiento Proteico-Postraduccional , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , ADN/genética , ADN/metabolismo , Metilación de ADN , Elementos de Facilitación Genéticos , Expresión Génica , Histonas/genética , Células Madre Embrionarias Humanas/citología , Humanos , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina/genética , Nestina/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo
3.
PLoS Comput Biol ; 17(11): e1009547, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748533

RESUMEN

We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding.


Asunto(s)
5-Metilcitosina/análogos & derivados , Metilación de ADN , ADN/química , ADN/metabolismo , Epigénesis Genética , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Sitios de Unión , Fenómenos Biofísicos , Biología Computacional , ADN/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
4.
Proc Natl Acad Sci U S A ; 117(13): 7216-7224, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32165536

RESUMEN

Protein flexibility and disorder is emerging as a crucial modulator of chromatin structure. Histone tail disorder enables transient binding of different molecules to the nucleosomes, thereby promoting heterogeneous and dynamic internucleosome interactions and making possible recruitment of a wide-range of regulatory and remodeling proteins. On the basis of extensive multiscale modeling we reveal the importance of linker histone H1 protein disorder for chromatin hierarchical looping. Our multiscale approach bridges microsecond-long bias-exchange metadynamics molecular dynamics simulations of atomistic 211-bp nucleosomes with coarse-grained Monte Carlo simulations of 100-nucleosome systems. We show that the long C-terminal domain (CTD) of H1-a ubiquitous nucleosome-binding protein-remains disordered when bound to the nucleosome. Notably, such CTD disorder leads to an asymmetric and dynamical nucleosome conformation that promotes chromatin structural flexibility and establishes long-range hierarchical loops. Furthermore, the degree of condensation and flexibility of H1 can be fine-tuned, explaining chromosomal differences of interphase versus metaphase states that correspond to partial and hyperphosphorylated H1, respectively. This important role of H1 protein disorder in large-scale chromatin organization has a wide range of biological implications.


Asunto(s)
Cromatina/fisiología , Proteínas de Unión al ADN/fisiología , Animales , Cromatina/genética , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Metafase , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleosomas/fisiología , Unión Proteica/fisiología
5.
Biochemistry ; 59(4): 379-388, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31815441

RESUMEN

It is increasingly recognized that the structures and dynamics of G-quadruplex DNA molecules are dictated by their sequences and greatly affected by environmental factors. The core guanine tetrads (G-tetrads) coordinate cations and display a strong conformational rigidity compared with that of the connecting loops. Although long loops linking the G-tetrads are typically disfavored, when present, they provide a striking illustration of the dynamics of short, single-stranded DNA regions. In addition to their role in determining the stability of the G-quadruplex state, these loops are also interesting as potential drug targets. To characterize accurately the dynamics of this DNA state, we apply here the principles of structural ensemble determination developed in the past two decades for protein molecules to DNA molecules. We thus perform extensive molecular dynamics simulations restrained with nuclear magnetic resonance residual dipolar couplings to determine a structural ensemble of the human CEB25 minisatellite G-quadruplex, which contains a connecting loop of nine nucleotides. This structural ensemble displays a wide set of arrangements for the loop and a compact, well-defined G-quadruplex core. Our results show the importance of stacking interactions in the loop and strengthen the ability of the closing base pairs to confer a large thermodynamic stability to the G-quadruplex structure.


Asunto(s)
ADN/química , ADN/ultraestructura , G-Cuádruplex , Guanina/química , Guanina/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación de Ácido Nucleico , Termodinámica
6.
Genome Biol ; 20(1): 124, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31215477

RESUMEN

Following publication of the original article [1], the authors reported the following error in the name of the fourth author.

7.
Genome Biol ; 20(1): 11, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635026

RESUMEN

Following publication of the original article [1], the authors reported the following error in the name of the fourth author.

8.
Genome Biol ; 19(1): 229, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30591072

RESUMEN

BACKGROUND: RNA secondary structures in the 5'-untranslated regions (5'-UTR) of mRNAs are key to the post-transcriptional regulation of gene expression. While it is evident that non-canonical Hoogsteen-paired G-quadruplex (rG4) structures somehow contribute to the regulation of translation initiation, the nature and extent of human mRNAs that are regulated by rG4s is not known. Here, we provide new insights into a mechanism by which rG4 formation modulates translation. RESULTS: Using transcriptome-wide ribosome profiling, we identify rG4-driven mRNAs in HeLa cells and reveal that rG4s in the 5'-UTRs of inefficiently translated mRNAs associate with high ribosome density and the translation of repressive upstream open reading frames (uORF). We demonstrate that depletion of the rG4-unwinding helicases DHX36 and DHX9 promotes translation of rG4-associated uORFs while reducing the translation of coding regions for transcripts that comprise proto-oncogenes, transcription factors and epigenetic regulators. Transcriptome-wide identification of DHX9 binding sites shows that reduced translation is mediated through direct physical interaction between the helicase and its rG4 substrate. CONCLUSION: This study identifies human mRNAs whose translation efficiency is modulated by the DHX36- and DHX9-dependent folding/unfolding of rG4s within their 5'-UTRs. We reveal a previously unknown mechanism for translation regulation in which unresolved rG4s within 5'-UTRs promote 80S ribosome formation on upstream start codons, causing inhibition of translation of the downstream main open reading frames. Our findings suggest that the interaction of helicases with rG4s could be targeted for future therapeutic intervention.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , G-Cuádruplex , Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas , Regiones no Traducidas 5' , Humanos , Sistemas de Lectura Abierta , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Transcriptoma
9.
Nat Chem ; 10(12): 1258-1266, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30349137

RESUMEN

Nucleosomes are the basic unit of chromatin that help the packaging of genetic material while controlling access to the genetic information. The underlying DNA sequence, together with transcription-associated proteins and chromatin remodelling complexes, are important factors that influence the organization of nucleosomes. Here, we show that the naturally occurring DNA modification, 5-formylcytosine (5fC) is linked to tissue-specific nucleosome organization. Our study reveals that 5fC is associated with increased nucleosome occupancy in vitro and in vivo. We demonstrate that 5fC-associated nucleosomes at enhancers in the mammalian hindbrain and heart are linked to elevated gene expression. Our study also reveals the formation of a reversible-covalent Schiff base linkage between lysines of histone proteins and 5fC within nucleosomes in a cellular environment. We define their specific genomic loci in mouse embryonic stem cells and look into the biological consequences of these DNA-histone Schiff base sites. Collectively, our findings show that 5fC is a determinant of nucleosome organization and plays a role in establishing distinct regulatory regions that control transcription.


Asunto(s)
Citosina/análogos & derivados , ADN/química , Histonas/química , Células Madre Embrionarias de Ratones/química , Nucleosomas/química , Animales , Citosina/química , Ratones , Bases de Schiff/química
10.
Elife ; 62017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406400

RESUMEN

Site-specific histone ubiquitylation plays a central role in orchestrating the response to DNA double-strand breaks (DSBs). DSBs elicit a cascade of events controlled by the ubiquitin ligase RNF168, which promotes the accumulation of repair factors such as 53BP1 and BRCA1 on the chromatin flanking the break site. RNF168 also promotes its own accumulation, and that of its paralog RNF169, but how they recognize ubiquitylated chromatin is unknown. Using methyl-TROSY solution NMR spectroscopy and molecular dynamics simulations, we present an atomic resolution model of human RNF169 binding to a ubiquitylated nucleosome, and validate it by electron cryomicroscopy. We establish that RNF169 binds to ubiquitylated H2A-Lys13/Lys15 in a manner that involves its canonical ubiquitin-binding helix and a pair of arginine-rich motifs that interact with the nucleosome acidic patch. This three-pronged interaction mechanism is distinct from that by which 53BP1 binds to ubiquitylated H2A-Lys15 highlighting the diversity in site-specific recognition of ubiquitylated nucleosomes.


Asunto(s)
Roturas del ADN de Doble Cadena , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Microscopía por Crioelectrón , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Unión Proteica
11.
Nucleic Acids Res ; 45(7): 4217-4230, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28088759

RESUMEN

Last generation of force-fields are raising expectations on the quality of molecular dynamics (MD) simulations of DNA, as well as to the belief that theoretical models can substitute experimental ones in several cases. However these claims are based on limited benchmarks, where MD simulations have shown the ability to reproduce already existing 'experimental models', which in turn, have an unclear accuracy to represent DNA conformation in solution. In this work we explore the ability of different force-fields to predict the structure of two new B-DNA dodecamers, determined herein by means of 1H nuclear magnetic resonance (NMR). The study allowed us to check directly for experimental NMR observables on duplexes previously not solved, and also to assess the reliability of 'experimental structures'. We observed that technical details in the annealing procedures can induce non-negligible local changes in the final structures. We also found that while not all theoretical simulations are equally reliable, those obtained using last generation of AMBER force-fields (BSC1 and BSC0OL15) show predictive power in the multi-microsecond timescale and can be safely used to reproduce global structure of DNA duplexes and fine sequence-dependent details.


Asunto(s)
ADN Forma B/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Secuencia de Bases , Cristalografía por Rayos X , Conformación de Ácido Nucleico
12.
Nat Methods ; 13(1): 55-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26569599

RESUMEN

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 µs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Asunto(s)
ADN/química , Teoría Cuántica
13.
Org Lett ; 17(21): 5416-9, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26492193

RESUMEN

The synthesis of a novel series of seven-membered ring nucleoside analogues as candidates for biological screening and gene silencing applications is described. The key step in the synthetic approach is a stereoselective synthesis of an epoxide that is used as a common synthetic intermediate to prepare functionalized oxepane nucleoside derivatives. The conformational landscape and preferred ring-puckering of selected oxepane nucleosides was also studied by NMR, X-ray crystallography, and quantum mechanical calculations.


Asunto(s)
Nucleósidos/química , Nucleósidos/síntesis química , Cristalografía por Rayos X , Conformación Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Estereoisomerismo
14.
Angew Chem Int Ed Engl ; 54(36): 10488-91, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26224143

RESUMEN

The stability of DNA is highly dependent on the properties of the surrounding solvent, such as ionic strength, pH, and the presence of denaturants and osmolytes. Addition of pyridine is known to unfold DNA by replacing π-π stacking interactions between bases, stabilizing conformations in which the nucleotides are solvent exposed. We show here experimental and theoretical evidences that pyridine can change its role and in fact stabilize the DNA under acidic conditions. NMR spectroscopy and MD simulations demonstrate that the reversal in the denaturing role of pyridine is specific, and is related to its character as pseudo groove binder. The present study sheds light on the nature of DNA stability and on the relationship between DNA and solvent, with clear biotechnological implications.


Asunto(s)
Ácidos/química , ADN/química , Concentración de Iones de Hidrógeno , Desnaturalización de Ácido Nucleico , Piridinas/química , Simulación de Dinámica Molecular
15.
J Am Chem Soc ; 137(32): 10205-15, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26192632

RESUMEN

Histone tails and their epigenetic modifications play crucial roles in gene expression regulation by altering the architecture of chromatin. However, the structural mechanisms by which histone tails influence the interconversion between active and inactive chromatin remain unknown. Given the technical challenges in obtaining detailed experimental characterizations of the structure of chromatin, multiscale computations offer a promising alternative to model the effect of histone tails on chromatin folding. Here we combine multimicrosecond atomistic molecular dynamics simulations of dinucleosomes and histone tails in explicit solvent and ions, performed with three different state-of-the-art force fields and validated by experimental NMR measurements, with coarse-grained Monte Carlo simulations of 24-nucleosome arrays to describe the conformational landscape of histone tails, their roles in chromatin compaction, and the impact of lysine acetylation, a widespread epigenetic change, on both. We find that while the wild-type tails are highly flexible and disordered, the dramatic increase of secondary-structure order by lysine acetylation unfolds chromatin by decreasing tail availability for crucial fiber-compacting internucleosome interactions. This molecular level description of the effect of histone tails and their charge modifications on chromatin folding explains the sequence sensitivity and underscores the delicate connection between local and global structural and functional effects. Our approach also opens new avenues for multiscale processes of biomolecular complexes.


Asunto(s)
Cromatina/química , Cromatina/genética , Epigénesis Genética , Histonas/química , Acetilación , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Método de Montecarlo , Nucleosomas/química , Nucleosomas/metabolismo
16.
J Org Chem ; 80(6): 3083-91, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25723361

RESUMEN

We report the synthesis, thermal stability, and RNase H substrate activity of 2'-deoxy-2',4'-difluoroarabino-modified nucleic acids. 2'-Deoxy-2',4'-difluoroarabinouridine (2,'4'-diF-araU) was prepared in a stereoselective way in six steps from 2'-deoxy-2'-fluoroarabinouridine (2'-F-araU). NMR analysis and quantum mechanical calculations at the nucleoside level reveal that introduction of 4'-fluorine introduces a strong bias toward the North conformation, despite the presence of the 2'-ßF, which generally steers the sugar pucker toward the South/East conformation. Incorporation of the novel monomer into DNA results on a neutral to slightly stabilizing thermal effect on DNA-RNA hybrids. Insertion of 2',4'-diF-araU nucleotides in the DNA strand of a DNA-RNA hybrid decreases the rate of both human and HIV reverse transcriptase-associated RNase H-mediated cleavage of the complement RNA strand compared to that for an all-DNA strand or a DNA strand containing the corresponding 2'-F-araU nucleotide units, consistent with the notion that a 4'-fluorine in 2'-F-araU switches the preferred sugar conformation from DNA-like (South/East) to RNA-like (North).


Asunto(s)
Arabinosa/análogos & derivados , ADN/química , ADN/síntesis química , ARN/química , ARN/síntesis química , Arabinosa/química , Estructura Molecular
17.
Angew Chem Int Ed Engl ; 54(2): 467-71, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25417598

RESUMEN

By combining ion-mobility mass spectrometry experiments with sub-millisecond classical and ab initio molecular dynamics we fully characterized, for the first time, the dynamic ensemble of a model nucleic acid in the gas phase under electrospray ionization conditions. The studied oligonucleotide unfolds upon vaporization, loses memory of the solution structure, and explores true gas-phase conformational space. Contrary to our original expectations, the oligonucleotide shows very rich dynamics in three different timescales (multi-picosecond, nanosecond, and sub-millisecond). The shorter timescale dynamics has a quantum mechanical nature and leads to changes in the covalent structure, whereas the other two are of classical origin. Overall, this study suggests that a re-evaluation on our view of the physics of nucleic acids upon vaporization is needed.


Asunto(s)
Gases/síntesis química , Oligonucleótidos/química , Estructura Molecular
18.
J Phys Chem B ; 118(29): 8540-8, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-24968001

RESUMEN

The study of nucleic acids in low-polarity environments paves the way for novel biotechnological applications of DNA. Here, we use a repertoire of atomistic molecular simulation tools to study the nature of DNA when placed in a highly apolar environment and when transferred from aqueous to apolar solvent. Our results show that DNA becomes stiffer in apolar solvents and suggest that highly negatively charged states, which are the most prevalent in water, are strongly disfavored in apolar solvents and neutral states with conformations not far from the aqueous ones are the dominant forms. Transfer from water to an apolar solvent such as CCl4 is unlikely to occur, but our results suggest that if forced, the DNA would migrate surrounded by a small shell of water (the higher the DNA charge, the larger the number of water molecules in this shell). Even the neutral form (predicted to be the dominant one in apolar solvents) would surround itself by a small number of highly stable water molecules when moved from water to a highly apolar environment. Neutralization of DNA charges seems a crucial requirement for transfer of DNA to apolar media, and the most likely mechanism to achieve good transfer properties.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Solventes/química , Secuencia de Bases , ADN/genética , Secuencias Invertidas Repetidas , Conformación de Ácido Nucleico , Agua/química
19.
J Am Chem Soc ; 136(8): 3075-86, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24490755

RESUMEN

It has been known for decades that alkylammonium ions, such as tetramethyl ammonium (TMA), alter the usual correlation between DNA GC-content and duplex stability. In some cases it is even possible for an AT-rich duplex to be more stable than a GC-rich duplex of the same length. There has been much speculation regarding the origin of this aberration in sequence-dependent DNA duplex stability, but no clear resolution. Using a combination of molecular dynamics simulations and NMR spectroscopy we demonstrate that choline (2-hydroxy-N,N,N-trimethylethanaminium) and TMA are preferentially localized in the minor groove of DNA duplexes at A·T base pairs and these same ions show less pronounced localization in the major groove compared to what has been demonstrated for alkali and alkali earth metal ions. Furthermore, free energy calculations show that single-stranded GC-rich sequences exhibit more favorable solvation by choline than single-stranded AT-rich sequences. The sequence-specific nature of choline and TMA binding provides a rationale for the enhanced stability of AT-rich sequences when alkyl-ammonium ions are used as the counterions of DNA. Our combined theoretical and experimental study provides one of the most detailed pictures to date of cations localized along DNA in the solution state, and provides insights that go beyond understanding alkyl-ammonium ion binding to DNA. In particular, because choline and TMA bind to DNA in a manner that is found to be distinct from that previously reported for Na(+), K(+), Mg(2+), and Ca(2+), our results reveal the important but underappreciated role that most other cations play in sequence-specific duplex stability.


Asunto(s)
Colina/química , ADN/química , Conformación de Ácido Nucleico , Compuestos de Amonio Cuaternario/química , Secuencia Rica en GC , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular
20.
FEBS J ; 281(4): 1085-99, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24304855

RESUMEN

Guanine-rich sequences show large structural variability, with folds ranging from duplex to triplex and quadruplex helices. Quadruplexes are polymorphic, and can show multiple stoichiometries, parallel and antiparallel strand alignments, and different topological arrangements. We analyze here the equilibrium between intramolecular antiparallel and intermolecular parallel G-quadruplexes in the thrombin-binding aptamer (TBA) sequence. Our theoretical and experimental studies demonstrate that an apparently simple modification at the loops of TBA induces a large change in the monomeric antiparallel structure of TBA to yield a parallel G-quadruplex showing a novel T-tetrad. The present results illustrate the extreme polymorphism of G-quadruplexes and the ease with which their conformation in solution can be manipulated by nucleotide modification.


Asunto(s)
Aptámeros de Nucleótidos/química , G-Cuádruplex , Espectroscopía de Resonancia Magnética , Conformación de Ácido Nucleico , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...