Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 19(24): 7425-34, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22055408

RESUMEN

The serine protease thrombin plays several key roles in the clotting cascade within the hemostatic system, such as in fibrin formation and platelet activation. Thus, development of an inhibitor that binds to the enzyme's active site (a direct thrombin inhibitor) offers an approach for the treatment of thrombus-associated diseases. Previous structure-activity relationship studies originally based on the bradykinin breakdown product Arg-Pro-Pro-Gly-Phe (RPPGF) led to the development of lead compound FM 19 (d-Arg-Oic-Pro-d-Ala-Phe(p-Me)-NH(2)). The recently determined X-ray structure of FM 19 in the active site of thrombin has revealed sites of modification to potentially improve inhibition. In this study, we report the synthesis and biological characterization of nine peptides that replace only the d-Arg residue of the FM 19 sequence, investigating ways to add conformational restriction, modification of the basic moiety at the end of the side chain, and removal of the charge from the N-terminus. Two of these peptides, 6 and 7 (IC(50) values of 0.51 and 0.45 µM, respectively), show similar potency to the best compounds in the FM 19 series reported thus far.


Asunto(s)
Antitrombinas/química , Antitrombinas/farmacología , Péptidos/química , Péptidos/farmacología , Trombina/antagonistas & inhibidores , Secuencia de Aminoácidos , Antitrombinas/síntesis química , Bradiquinina/química , Diseño de Fármacos , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Péptidos/síntesis química , Trombina/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(24): 9804-8, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21628583

RESUMEN

The emergence of multidrug-resistant and extensively drug-resistant (XDR) tuberculosis (TB) is a serious global threat. Aminoglycoside antibiotics are used as a last resort to treat XDR-TB. Resistance to the aminoglycoside kanamycin is a hallmark of XDR-TB. Here, we reveal the function and structure of the mycobacterial protein Eis responsible for resistance to kanamycin in a significant fraction of kanamycin-resistant Mycobacterium tuberculosis clinical isolates. We demonstrate that Eis has an unprecedented ability to acetylate multiple amines of many aminoglycosides. Structural and mutagenesis studies of Eis indicate that its acetylation mechanism is enabled by a complex tripartite fold that includes two general control non-derepressible 5 (GCN5)-related N-acetyltransferase regions. An intricate negatively charged substrate-binding pocket of Eis is a potential target of new antitubercular drugs expected to overcome aminoglycoside resistance.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Mycobacterium tuberculosis/genética , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antígenos Bacterianos/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Electroforesis en Gel de Poliacrilamida , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Humanos , Kanamicina/farmacología , Kanamicina/uso terapéutico , Datos de Secuencia Molecular , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Unión Proteica , Homología de Secuencia de Aminoácido , Espectrofotometría , Especificidad por Sustrato
3.
Biochem Biophys Res Commun ; 403(1): 85-90, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21040710

RESUMEN

Aminoglycosides are important antibiotics used against a wide range of pathogens. As a mechanism of defense, bacteria have evolved enzymes able to inactivate these drugs by regio-selectively adding a variety of functionalities (acetyl, phospho, and nucelotidyl groups) to their scaffolds. The aminoglycoside nucleotidyltransferase ANT(4') is one of the most prevalent and unique modifying-enzymes. Here, by TLC, HRMS, and colorimetric assays, we demonstrate that the resistance enzyme ANT(4') from Staphylococcus aureus is highly substrate and cosubstrate promiscuous. We show that deoxy-ribonucleotide triphosphates (dNTPs) are better cosubstrates than NTPs. We demonstrate that the position of the triphosphate group (5' and not 3') on the ribose/deoxyribose ring is important for recognition by ANT(4'), and that NTPs with larger substituents at the 3'-position of the ribose ring are not cosubstrates for ANT(4'). We confirm that for all aminoglycosides tested, the respective nucleotidylated products are completely inactive. These results provide valuable insights into the development of strategies to combat the ever-growing bacterial resistance problem.


Asunto(s)
Aminoglicósidos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Nucleotidiltransferasas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Aminoglicósidos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Especificidad por Sustrato
4.
Biochemistry ; 49(29): 6219-27, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20560540

RESUMEN

In eukaryotes, choline acetyltransferase (ChAT) catalyzes the reversible formation of the neurotransmitter acetylcholine from choline and acetyl-CoA. ChAT belongs to a family of CoA-dependent enzymes that also includes the carnitine acyltransferases CrAT, CrOT, and CPTs. In contrast to CrOT and CPTs that are very active toward medium- and long-chain acyl-CoAs, respectively, CrAT and ChAT display activity toward only short-chain acyl-CoAs. We recently demonstrated the substrate and cosubstrate promiscuity of the wild-type human ChAT (hChAT). To extend the flexibility of this enzyme, we have generated a series of single, double, and triple hChAT mutants. Here we report the conversion of hChAT into choline octanoyltransferase (ChOT) and choline palmitoyltransferase (ChPT). The E337 and C550 residues (numbering from hChAT) were previously shown to dictate the acyl-CoA cosubstrate specificity in the carnitine series. Here we identify and demonstrate the importance of C551, in addition to E337 and C550, in contributing to the acyl-CoA specificity of hChAT. We also show that either C550 or C551 needs to be present for the transfer of medium- and long-chain acyl-CoAs by hChAT. By exploring the potential expansion of the tunnel on the substrate side, we demonstrate that residues M84, Y436, and Y552 play a critical role in binding and holding the choline substrate in the ChAT active site.


Asunto(s)
Colina O-Acetiltransferasa/química , Colina/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Catálisis , Colina O-Acetiltransferasa/genética , Humanos , Datos de Secuencia Molecular , Especificidad por Sustrato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...