Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Chem Sci ; 15(18): 6622-6642, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725511

RESUMEN

Earth abundant transition metal nitrides (TMNs) are a promising group of catalysts for a wide range of thermocatalytic, electrocatalytic and photocatalytic reactions, with potential to achieve high activity and selectivity while reducing reliance on the use of Pt-group metals. However, current fundamental understanding of the active sites of these materials and the mechanisms by which selective transformations occur is somewhat lacking. Recent investigations of these materials from our group and others have utilized probe molecules, model surfaces, and in situ techniques to elucidate the origin of their activity, strong metal-support interactions, and unique d-band electronic structures. This Perspective discusses three classes of reactions for which TMNs have been used as case studies to highlight how these properties, along with synergistic interactions with metal overlayers, can be exploited to design active, selective and stable TMN catalysts. First, studies of the reactions of C1 molecules will be discussed, specifically highlighting the ability of TMNs to activate CO2. Second, the upgrading of biomass and biomass-derived oxygenates over TMN catalysts will be reviewed. Third, the use of TMNs for H2 production via water electrolysis will be discussed. Finally, we will discuss the challenges and future directions in the study of TMN catalysts, in particular expanding on opportunities to enhance fundamental mechanistic understanding using model surfaces, the elucidation of active centers via in situ techniques, and the development of efficient synthesis methods and design principles.

2.
Environ Sci Technol ; 58(12): 5210-5219, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483184

RESUMEN

Wildfires are a significant threat to human health, in part through degraded air quality. Prescribed burning can reduce wildfire severity but can also lead to an increase in air pollution. The complexities of fires and atmospheric processes lead to uncertainties when predicting the air quality impacts of fire and make it difficult to fully assess the costs and benefits of an expansion of prescribed fire. By modeling differences in emissions, surface conditions, and meteorology between wildfire and prescribed burns, we present a novel comparison of the air quality impacts of these fire types under specific scenarios. One wildfire and two prescribed burn scenarios were considered, with one prescribed burn scenario optimized for potential smoke exposure. We found that PM2.5 emissions were reduced by 52%, from 0.27 to 0.14 Tg, when fires burned under prescribed burn conditions, considerably reducing PM2.5 concentrations. Excess short-term mortality from PM2.5 exposure was 40 deaths for fires under wildfire conditions and 39 and 15 deaths for fires under the default and optimized prescribed burn scenarios, respectively. Our findings suggest prescribed burns, particularly when planned during conditions that minimize smoke exposure, could be a net benefit for the impacts of wildfires on air quality and health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , Incendios Forestales , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , California , Incendios , Material Particulado/análisis , Humo/análisis , Incendios Forestales/estadística & datos numéricos
3.
Aerosp Med Hum Perform ; 95(2): 118-122, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38263103

RESUMEN

INTRODUCTION: Aircraft are manufactured according to design parameters that must account for the size and physical characteristics of the pilot. While cockpit dimensions, seats, restraints, and related components do not change substantially over the airframe lifecycle, it is conceivable that the occupant may, even if initially well-suited. This investigation focused on longitudinal body mass index (BMI) changes within a cohort of British Army Air Corps pilots.METHODS: The study was a retrospective examination of electronic medical record data to assess longitudinal change within a representative cohort of Army pilots. Voluntary subjects were assigned unique subject numbers matched with individual electronic medical record data. Subject's age, service length, height, weight, and BMI were extracted from routine historical aviation medical exams.RESULTS: Among 106 British Army Air Corps pilots, the mean age was 35.3 yr (SD = 7.4) with average length of service as a pilot of 9.0 yr (SD = 5.2). Within the observed cohort, the mean change in individual weight over time was an increase of 4.6 kg (SD = 7.3). Height remained relatively stable with a mean increase of 0.6 cm (SD = 1.9). Given the increase in weight, BMI was noted to increase longitudinally with a mean of 1.3 kg · m-2 (SD = 2.4).DISCUSSION: British Army pilots experience increases in BMI over time much like the general population. Results of this study serve to inform future policy related to the body composition of aviation applicants, the retention of previously qualified pilots, and the safety concerns of crashworthiness design specifications.Porter WD, Wilde GD, Jeffery NP, Walters PL, Eke AJ, Bushby AJR, Adams MS, Gaydos SJ. Longitudinal changes in the body mass index of British Army pilots. Aerosp Med Hum Perform. 2024; 95(2):118-122.


Asunto(s)
Aeronaves , Aviación , Humanos , Adulto , Índice de Masa Corporal , Estudios Retrospectivos , Composición Corporal
4.
J Am Chem Soc ; 146(5): 2857-2875, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266172

RESUMEN

Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.

5.
Sci Total Environ ; 917: 170321, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38278259

RESUMEN

Biomass burning is a major contributor to ambient air pollution worldwide, and the accurate characterization of biomass burning plume behavior is an important consideration for air quality models that attempt to reproduce these emissions. Smoke plume injection height, or the vertical level into which the combustion emissions are released, is an important consideration for determining plume behavior, transport, and eventual impacts. This injection height is dependent on several fire properties, each with estimates and uncertainties in terms of historical fire emissions inventories. One such property is the fire heat flux, a fire property metric sometimes used to predict and parameterize plume injection heights in current chemical transport models. Although important for plume behavior, fire heat flux is difficult to predict and parameterize efficiently, and is therefore often held to fixed, constant values in these models, leading to potential model biases relative to real world conditions. In this study we collect observed heat flux estimates from satellite data products for three wildfire events over northern California and use these estimates in a regional chemical transport model to investigate and quantify the impacts of observationally constrained heat fluxes on the modeled injection height and downwind air quality. We find large differences between these observationally derived heat flux estimates and fixed model assumptions, with important implications for modeled behavior of plume dynamics and surface air quality impacts. Overall, we find that using observationally constrained heat flux estimates tends to reduce modeled injection heights for our chosen fires, resulting in large increases in surface particulate matter concentrations. While local wind conditions contribute to variability and additional uncertainties in the impacts of modified plume injection heights, we find observationally constrained heat fluxes to be an impactful and potentially useful tool towards the improvement of emissions inventory assumptions and parameterizations.

6.
Proc Natl Acad Sci U S A ; 120(47): e2307587120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37976260

RESUMEN

Marine phytoplankton are primary producers in ocean ecosystems and emit dimethyl sulfide (DMS) into the atmosphere. DMS emissions are the largest biological source of atmospheric sulfur and are one of the largest uncertainties in global climate modeling. DMS is oxidized to methanesulfonic acid (MSA), sulfur dioxide, and hydroperoxymethyl thioformate, all of which can be oxidized to sulfate. Ice core records of MSA are used to investigate past DMS emissions but rely on the implicit assumption that the relative yield of oxidation products from DMS remains constant. However, this assumption is uncertain because there are no long-term records that compare MSA to other DMS oxidation products. Here, we share the first long-term record of both MSA and DMS-derived biogenic sulfate concentration in Greenland ice core samples from 1200 to 2006 CE. While MSA declines on average by 0.2 µg S kg-1 over the industrial era, biogenic sulfate from DMS increases by 0.8 µg S kg-1. This increasing biogenic sulfate contradicts previous assertions of declining North Atlantic primary productivity inferred from decreasing MSA concentrations in Greenland ice cores over the industrial era. The changing ratio of MSA to biogenic sulfate suggests that trends in MSA could be caused by time-varying atmospheric chemistry and that MSA concentrations alone should not be used to infer past primary productivity.

7.
Life (Basel) ; 13(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36983971

RESUMEN

Exploring austere environments required a reimagining of resource acquisition and utilization. Cyanobacterial in situ resources utilization (ISRU) and biological life support system (BLSS) bioreactors have been proposed to allow crewed space missions to extend beyond the temporal boundaries that current vehicle mass capacities allow. Many cyanobacteria and other microscopic organisms evolved during a period of Earth's history that was marked by very harsh conditions, requiring robust biochemical systems to ensure survival. Some species work wonderfully in a bioweathering capacity (siderophilic), and others are widely used for their nutritional power (non-siderophilic). Playing to each of their strengths and having them grow and feed off of each other is the basis for the proposed idea for a series of three bioreactors, starting from regolith processing and proceeding to nutritional products, gaseous liberation, and biofuel production. In this paper, we discuss what that three reactor system will look like, with the main emphasis on the nutritional stage.

8.
Clin Toxicol (Phila) ; 60(7): 798-807, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35323087

RESUMEN

CONTEXT: Ethylene glycol poisoning manifests as metabolic acidemia, acute kidney injury and death. The diagnosis and treatment depend on history and biochemical tests. Glycolate is a key toxic metabolite that impacts prognosis, but assay results are not widely available in a clinically useful timeframe. We quantitated the impact of serum glycolate concentration for prognostication and evaluated whether more readily available biochemical tests are acceptable surrogates for the glycolate concentration. OBJECTIVES: The objectives of this study are to 1) assess the prognostic value of the initial glycolate concentration on the occurrence of AKI or mortality in patients with ethylene glycol exposure (prognostic study); 2) identify surrogate markers that correlate best with glycolate concentrations (surrogate study). METHODS: A systematic review of the literature was performed using Medline/PubMed, EMBASE, Cochrane library, conference proceedings and reference lists. Human studies reporting measured glycolate concentrations were eligible. Glycolate concentrations were related to categorical clinical outcomes (acute kidney injury, mortality), and correlated with continuous surrogate biochemical measurements (anion gap, base excess, bicarbonate concentration and pH). Receiver operating characteristic curves were constructed to calculate the positive predictive values and the negative predictive values of the threshold glycolate concentrations that predict acute kidney injury and mortality. Further, glycolate concentrations corresponding to 100% negative predictive value for mortality and 95% negative predictive value for acute kidney injury were determined. RESULTS: Of 1,531 articles identified, 655 were potentially eligible and 32 were included, reflecting 137 cases from 133 patients for the prognostic study and 154 cases from 150 patients for the surrogate study. The median glycolate concentration was 11.2 mmol/L (85.1 mg/dL, range 0-38.0 mmol/L, 0-288.8 mg/dL), 93% of patients were treated with antidotes, 80% received extracorporeal treatments, 49% developed acute kidney injury and 13% died. The glycolate concentration best predicting acute kidney injury was 12.9 mmol/L (98.0 mg/dL, sensitivity 78.5%, specificity 88.1%, positive predictive value 86.4%, negative predictive value 80.9%). The glycolate concentration threshold for a 95% negative predictive value for acute kidney injury was 6.6 mmol/L (50.2 mg/dL, sensitivity 96.9%, specificity 62.7%). The glycolate concentration best predicting mortality was 19.6 mmol/L (149.0 mg/dL, sensitivity 61.1%, specificity 81.4%, positive predictive value 33.3%, negative predictive value 93.2%). The glycolate concentration threshold for a 100% negative predictive value for mortality was 8.3 mmol/L (63.1 mg/dL, sensitivity 100.0%, specificity 35.6%). The glycolate concentration correlated best with the anion gap (R2 = 0.73), followed by bicarbonate (R2 = 0.57), pH (R2 = 0.50) and then base excess (R2 = 0.25), while there was no correlation between the glycolate and ethylene glycol concentration (R2 = 0.00). These data can assist clinicians in planning treatments such as extracorporeal treatments and prognostication. Potentially, they may also provide some reassurance regarding when extracorporeal treatments can be delayed while awaiting the results of further testing in patients in whom ethylene glycol poisoning is suspected but not yet confirmed. CONCLUSIONS: This systematic review demonstrates that the glycolate concentration predicts mortality (unlikely if <8 mmol/L [61 mg/dL]). The anion gap is a reasonable surrogate measurement for glycolate concentration in the context of ethylene glycol poisoning. The findings are mainly based on published retrospective data which have various limitations. Further prospective validation studies are of interest.


Asunto(s)
Lesión Renal Aguda , Glicol de Etileno , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico , Bicarbonatos , Biomarcadores , Glicolatos , Humanos , Pronóstico , Estudios Retrospectivos
9.
Sci Total Environ ; 821: 153255, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35066029

RESUMEN

The ongoing desiccation of California's Salton Sea has led to increasing concerns about air quality and health for its surrounding communities, including the nearby Coachella Valley - a region already experiencing severe air quality and health disparities. Here we explore spatial air pollution and human health disparities in the Coachella Valley with particular attention to disparities arising across population characteristics including both socioeconomic and demographic vulnerabilities. We use two different measures of respiratory and cardiovascular health outcomes at the individual and census tract levels - one measure based on a randomly sampled telephone survey and the other measure based on emergency room visitation data - to investigate the degree to which these health outcomes are connected to air pollution and socioeconomic metrics. We further investigate biases and differences between the health outcome metrics themselves and suggest opportunities to address them in future analyses and survey efforts. We find that more vulnerable communities are associated with higher levels of fine particulates, but lower levels of ozone. While emergency visit rates show a significant positive correlation with both pollutants, no such association is found when using surveyed health outcome data. The ratio of emergency visits versus survey rates shows a positive relationship with socioeconomic and demographic vulnerability, indicating that vulnerable communities are less likely to self-report diagnoses despite higher rates of respiratory or cardiovascular hospitalization. Additionally, survey respondents tend to show less vulnerability relative to their surrounding census-based demographics. These findings suggest the need for greater attention to health issues specifically within disadvantaged communities in the Coachella Valley, building upon and working within existing community networks and local resources, to better address current and projected health needs. Our findings also highlight disparities in air pollution exposure, health outcomes, and population characteristics in the Coachella Valley, providing context for crucial pollution reduction efforts in the face of increasing environmental threats.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Benchmarking , California , Ambiente , Exposición a Riesgos Ambientales/análisis , Humanos , Evaluación de Resultado en la Atención de Salud
10.
Environ Sci Technol ; 56(2): 750-760, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34978436

RESUMEN

Current chemical transport models generally use a constant secondary organic aerosol (SOA) yield to represent SOA formation from aromatic compounds under low NOx conditions. However, a wide range of SOA yields (10 to 42%) from m-xylene under low NOx conditions is observed in this study. The chamber HO2/RO2 ratio is identified as a key factor explaining SOA yield variability: higher SOA yields are observed for runs with a higher HO2/RO2 ratio. The RO2 + RO2 pathway, which can be increasingly significant under low NOx and HO2/RO2 conditions, shows a lower SOA-forming potential compared to the RO2 + HO2 pathway. While the traditional low-NOx chamber experiments are commonly used to represent the RO2 + HO2 pathway, this study finds that the impacts of the RO2 + RO2 pathway cannot be ignored under certain conditions. We provide guidance on how to best control for these two pathways in conducting chamber experiments to best obtain SOA yield curves and quantify the contributions from each pathway. On the global scale, the chemical transport model GEOS-Chem is used to identify regions characterized by lower surface HO2/RO2 ratios, suggesting that the RO2 + RO2 pathway is more likely to prove significant to overall SOA yields in those regions. Current models generally do not consider the RO2 + RO2 impacts on aromatic SOA formation, but preliminary sensitivity tests with updated SOA yield parameters based on such a pathway suggest that without this consideration, some types of SOA may be overestimated in regions with lower HO2/RO2 ratios.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/química , Contaminantes Atmosféricos/análisis , Modelos Químicos , Compuestos Orgánicos/química
11.
Sci Total Environ ; 811: 152311, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34906579

RESUMEN

Vehicle exhaust, an important source of air pollution, is affected by many factors, including driving conditions, combustion efficiencies, and the usage of emission control devices. In this study, the Portable Emission Measurement System (PEMS) was used to test the emissions from China V and China VI heavy-duty diesel vehicles to evaluate the integrated effects of Selective Catalytic Reduction (SCR), velocity, and air-fuel ratio on carbon dioxide (CO2) and nitrogen oxide (NOx) emissions. Our results reveal that the average distance-based CO2 and CO emission factors at high velocities (50-90 km/h) are 25% and 61% lower than those at low velocities (less than 50 km/h). The use of SCR increases CO2 emissions in the range of 70-90 km/h (an average increase of 10.9%). In addition, SCR leads to a 55% NOx emission reduction at low velocities and 89% at high velocities, with an overall average reduction of 84%. We also find that SCR leads to a significant reduction in the correlation between NOx emissions and air-fuel ratio (0.76 vs 0.47 for China V truck; 0.72 vs 0.05 for China VI truck), but it does not cause a drastic reduction in the correlation coefficients between CO2 emissions and air-fuel ratio, which can be used to detect whether SCR is working effectively.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Dióxido de Carbono/análisis , China , Gases , Gasolina , Vehículos a Motor , Emisiones de Vehículos/análisis
12.
Life (Basel) ; 11(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34440588

RESUMEN

The future of long-duration spaceflight missions will place our vehicles and crew outside of the comfort of low-Earth orbit. Luxuries of quick resupply and frequent crew changes will not be available. Future missions will have to be adapted to low resource environments and be suited to use resources at their destinations to complete the latter parts of the mission. This includes the production of food, oxygen, and return fuel for human flight. In this chapter, we performed a review of the current literature, and offer a vision for the implementation of cyanobacteria-based bio-regenerative life support systems and in situ resource utilization during long duration expeditions, using the Moon and Mars for examples. Much work has been done to understand the nutritional benefits of cyanobacteria and their ability to survive in extreme environments like what is expected on other celestial objects. Fuel production is still in its infancy, but cyanobacterial production of methane is a promising front. In this chapter, we put forth a vision of a three-stage reactor system for regolith processing, nutritional and atmospheric production, and biofuel production as well as diving into what that system will look like during flight and a discussion on containment considerations.

13.
J Wildl Dis ; 57(1): 82-93, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33635976

RESUMEN

Epizootic hemorrhagic disease (EHD) is the most significant source of viral disease-related mortality in white-tailed deer (Odocoileus virginianus) in the US. Deer mortality from EHD has increased in the state of Michigan, US, since 2006, with the largest outbreak occurring in 2012. The 2012 outbreak provided an opportunity to evaluate how this disease affected EHD-related mortality in deer populations at a spatial scale typical of that expected for the greatest disease risk. Our objectives were to quantify the population impacts and spatial extent of EHD associated with areas of disease risk for deer populations and to determine how populations recovered over time following localized EHD impacts. We estimated the annual local abundance of deer for 5 yr immediately following a recent EHD outbreak. Because proximity to wetlands may affect EHD occurrence, we surveyed deer at varying distances (about 1 km and 5 km) from a riparian corridor to determine spatial variation in population impacts. Further, we assessed differences in deer abundance for sites affected and unaffected by EHD. Abundance estimates were lower along transects near the riparian corridor only in the affected area, reflecting EHD mortality associated with wetlands. The only change in abundance over time was a significant increase in the riparian strata in the EHD-affected site.


Asunto(s)
Ciervos/virología , Virus de la Enfermedad Hemorrágica Epizoótica , Infecciones por Reoviridae/veterinaria , Animales , Michigan/epidemiología , Infecciones por Reoviridae/epidemiología , Infecciones por Reoviridae/virología
14.
Environ Sci Technol ; 54(17): 10524-10532, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464056

RESUMEN

Total organic carbon (TOC) mass concentrations are decreasing across the contiguous United States (CONUS). We investigate decadal trends in organic carbon (OC) thermal fractions [OC1 (volatilizes at 140 °C), OC2 (280 °C), OC3 (480 °C), OC4 (580 °C)] and pyrolyzed carbon (PC), reported at 121 locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network from 2005 to 2015 for 23 regions across the CONUS. Reductions in PC and OC2 drive decreases in TOC (TOC = OC1 + OC2 + OC3 + OC4 + PC) mass concentrations. OC2 decreases by 40% from 2005 to 2015, and PC decreases by 34%. The largest absolute mass decreases occur in the eastern United States, and relative changes normalized to local concentrations are more uniform across the CONUS. OC is converted to organic mass (OM) using region- and season-specific OM:OC ratios. Simulations with GEOS-Chem reproduce OM trends and suggest that decreases across the CONUS are due to aerosol liquid water (ALW) chemistry. Individual model species, notably aerosol derived from isoprene oxidation products and formed in ALW, correlate significantly (p < 0.05) with OM2, even in arid regions. These findings contribute to literature that suggests air quality rules aimed at SO2 and NOx emissions induce the cobenefit of reducing organic particle mass through ALW chemistry, and these benefits extend beyond the eastern United States.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estados Unidos
15.
Glob Chang Biol ; 26(7): 3799-3808, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32227543

RESUMEN

Bluetongue virus and epizootic hemorrhagic disease (HD) virus are globally distributed, vector-borne viruses that infect and cause disease in domestic and wild ruminant species. The forces driving increases in resulting HD may be linked to weather conditions and increasing severity has been noted in northerly latitudes. We evaluated the role of drought severity in both space and time on changes in HD reports across the eastern United States for a recent 15 year period. The objectives of this study were to: (a) develop a spatiotemporal model to evaluate if drought severity explains changing patterns of HD presence; and (b) determine whether this potential risk factor varies in importance over the present range of HD in the eastern United States. Historic data (2000-2014) from an annual HD presence-absence survey conducted by the Southeastern Cooperative Wildlife Disease Study and from the United States Drought Monitor were used for this analysis. For every county in 23 states and for each of 15 years, data were based on reported drought status for August, wetland cover, the physiographic region, and the status of HD in the previous year. We used a generalized linear mixed model to explain HD presence and evaluated spatiotemporal predictors across the region. We found that drought severity was a significant predictor of HD presence and the significance of this relationship was dependent on latitude. In more northerly latitudes, where immunological naivety is most likely, we demonstrated the increasing strength of drought severity as a determinant of reported HD and established the importance of variation in drought severity as a risk factor over the present range of HD in the eastern United States. Our research provides spatially explicit evidence for the link between climate forces and emerging disease patterns across latitude for a globally distributed disease.


Asunto(s)
Virus de la Lengua Azul , Ciervos , Virus de la Enfermedad Hemorrágica Epizoótica , Infecciones por Reoviridae , Animales , Sequías , Estados Unidos
16.
PLoS One ; 15(4): e0230747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32236108

RESUMEN

Wild turkeys (Meleagris gallopavo; hereafter turkeys) are an important game animal whose popularity among hunters has increased in recent decades. Yet, the number of hunters pursuing turkeys appears to be in flux, patterns of hunter abundance have primarily been described at broad spatial scales, and the ability of management to impact hunter numbers in the post-restoration era of management through opportunity for quality hunting is unclear. We used county-scale estimates of turkey hunter numbers collected over a 14-year period (2001-2014) and time-series analyses to evaluate the spatial scales at which spring and fall turkey hunter populations fluctuate, and also used generalized linear mixed models to evaluate whether attributes related to quality turkey hunting explain recent patterns in hunter abundance. We found heterogeneity in turkey hunter population growth at finer spatial scales than has been previously described (i.e., counties and management units), and provide evidence for spatial structuring of hunter population dynamics among counties that did not always correspond with existing management units. Specifically, the directionality of hunter population change displays spatial structure along an east-west gradient in southern Michigan. We also found little evidence that factors providing opportunity for quality turkey hunting had meaningful impacts on recent spatial-temporal patterns of hunter numbers. Our results imply that providing quality turkey hunting opportunities alone may be insufficient for sustaining populations of turkey hunters in the future, and that modern determinants of hunter participation extend beyond the availability of abundant turkey populations. Moreover, our results demonstrate that interpretation of harvest data as indices of abundance for turkey populations is difficult in the absence of hunter effort data, as changes to turkey harvest are a function of potentially fine-scaled changes in populations of hunters, not simply changes to turkey populations.


Asunto(s)
Dinámica Poblacional , Pavos/crecimiento & desarrollo , Animales , Animales Salvajes/fisiología , Humanos , Michigan , Estaciones del Año , Deportes , Encuestas y Cuestionarios
17.
Anat Rec (Hoboken) ; 303(4): 1060-1074, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31260177

RESUMEN

The attachments of jaw muscles are typically implicated in the evolution and shape of the dorsotemporal fenestra on the skull roof of amniotes. However, the dorsotemporal fenestrae of many archosaurian reptiles possess smooth excavations rostral and dorsal to the dorsotemporal fossa which closely neighbors the dorsotemporal fenestra and jaw muscle attachments. Previous research has typically identified this region, here termed the frontoparietal fossa, to also have attachment surfaces for jaw-closing muscles. However, numerous observations of extant and extinct archosaurs described here suggest that other tissues are instead responsible for the size and shape of the frontoparietal fossa. This study reviewed the anatomical evidence that support soft-tissue hypotheses of the frontoparietal fossa and its phylogenetic distribution among sauropsids. Soft-tissue hypotheses (i.e., muscle, pneumatic sinus, vascular tissues) were analyzed using anatomical, imaging and in vivo thermography techniques within a phylogenetic framework using extant and extinct taxa to determine the inferential power underlying the reconstruction of the soft tissues in the skull roofs of dinosaurs, pseudosuchians, and other reptiles. Relevant anatomical features argue for rejection of the default hypothesis-that the fossa was muscular-due to a complete lack of osteological correlates reflective of muscle attachment. The most-supported inference of soft tissues is that the frontoparietal fossa contained a large vascular structure and adipose tissue. Despite the large sizes and diverse morphologies of these fossae found among dinosaur taxa, these data suggest that non-avian dinosaurs had the anatomical foundation to support physiologically significant vascular devices and/or vascular integumentary structures on their skull roofs. Anat Rec, 303:1060-1074, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Dinosaurios/anatomía & histología , Maxilares/anatomía & histología , Músculo Esquelético/anatomía & histología , Animales , Evolución Biológica , Fósiles , Sistema Musculoesquelético/anatomía & histología , Filogenia , Cráneo/anatomía & histología
18.
Anat Rec (Hoboken) ; 303(4): 1075-1103, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31618532

RESUMEN

Body size has thermal repercussions that impact physiology. Large-bodied dinosaurs potentially retained heat to the point of reaching dangerous levels, whereas small dinosaurs shed heat relatively easily. Elevated body temperatures are known to have an adverse influence on neurosensory tissues and require physiological mechanisms for selective brain and eye temperature regulation. Vascular osteological correlates in fossil dinosaur skulls from multiple clades representing different body-size classes were identified and compared. Neurovascular canals were identified that differentiate thermoregulatory strategies involving three sites of evaporative cooling that are known in extant diapsids to function in selective brain temperature regulation. Small dinosaurs showed similarly sized canals, reflecting a plesiomorphic balanced pattern of blood supply and a distributed thermoregulatory strategy with little evidence of enhancement of any sites of thermal exchange. Large dinosaurs, however, showed a more unbalanced vascular pattern whereby certain sites of thermal exchange were emphasized for enhanced blood flow, reflecting a more focused thermal strategy. A quantitative, statistical analysis of canal cross-sectional area was conducted to test these anatomical results, confirming that large-bodied, and often large-headed, species showed focused thermal strategies with enhanced collateral blood flow to certain sites of heat exchange. Large theropods showed evidence for a plesiomorphic balanced blood flow pattern, yet evidence for vascularization of the large antorbital paranasal air sinus indicates theropods may have had a fourth site of heat exchange as part of a novel focused thermoregulatory strategy. Evidence presented here for differing thermoregulatory strategies based on size and phylogeny helps refine our knowledge of dinosaur physiology. Anat Rec, 303:1075-1103, 2020. © 2019 American Association for Anatomy.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Encéfalo/irrigación sanguínea , Dinosaurios/anatomía & histología , Cabeza/anatomía & histología , Animales , Evolución Biológica , Dinosaurios/fisiología , Fósiles , Modelos Anatómicos , Filogenia
19.
Int J Ind Ergon ; 72: 272-280, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31745376

RESUMEN

A large proportion of non-fatal slips, trips, and falls (STFs) at surface mining facilities are associated with mobile equipment. Ingress and egress from mobile equipment can pose a fall risk to mobile equipment operators. The objective of this study was to determine mobile equipment operators' views of STF risks from mobile equipment, and to ascertain what factors, tasks, and conditions they perceive as contributing to these risks. A thematic analysis of 23 individual interviews and 2 group interviews was conducted, with 10 overarching themes identified from the transcripts. Mobile equipment operators indicated that being unable to see their feet or the ladder rungs during descent and the presence of contaminants on the ladders caused by normal operation make egress more dangerous than ingress. The flexible rails and high heights of the lower rungs identified over 40 years ago as issues for mobile equipment operators still pose a perceived STF risk. Further, the requirements of routine maintenance tasks such as oil and filter changes, greasing, and cleaning windows pose fall risks due to inadequate access and the need to carry supplies up and down equipment ladders. In addition to the mobile equipment, hazardous ground conditions and insufficient lighting were found to be key issues around the mobile equipment and in parking areas. The findings of this work indicate that mobile equipment operators feel at risk for STFs due to the design and condition of their equipment, and would like to see ladders replaced with safer stairways as the primary ingress/egress system.

20.
Aerosp Med Hum Perform ; 90(7): 606-612, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31227033

RESUMEN

BACKGROUND: From a population-based perspective, reports in the peer-reviewed medical literature suggest an increase in the overall prevalence of asthma in recent decades. Applicants for military aviation training with a current or past history of asthma are generally excluded in the United Kingdom.METHODS: In order to assess the impact of the prevalence of asthma on the available pool of military service candidates, the authors collected data on annual live births between 1916 and 2016 as well as peer-reviewed publications that provided insight into asthma prevalence trends within the United Kingdom across the last century (covering birth-year population cohorts ranging from 1924 to 1995). Regression techniques were used to estimate the prevalence of individuals who could reasonably expect to be found unfit for military aviation service due to asthma-like conditions within the birth-year cohorts between 2001 and 2016.RESULTS: Between 1916 and 2016, the number of live births in the United Kingdom has averaged approximately 802,000 per year. The reported prevalence of asthma, based on the assimilated data points, ranged from 2.3 cases per 1000 individuals among the 1924 birth-year cohort, to 29.8 cases per 1000 individuals among the 1990 birth-year cohort.DISCUSSION: Based on the data and analysis presented above, asthma continues to constitute a significant public health issue in the United Kingdom. Military services must base risk mitigation decisions on accurate and precise diagnostic categorizations, and prudently balance the benefits of allowing affected individuals to participate in military service with the potential for mission degradation or compromise.Porter WD, Powell-Dunford N, Wilde GD, Bushby AJR. Asthma and rotary-wing military aircrew selection. Aerosp Med Hum Perform. 2019; 90(7):606-612.


Asunto(s)
Medicina Aeroespacial/organización & administración , Asma/epidemiología , Aviación/organización & administración , Solicitud de Empleo , Personal Militar , Adolescente , Adulto , Medicina Aeroespacial/normas , Aviación/normas , Niño , Toma de Decisiones en la Organización , Humanos , Persona de Mediana Edad , Guías de Práctica Clínica como Asunto , Prevalencia , Reino Unido/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...