Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Eur J Hum Genet ; 32(2): 224-231, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38097767

RESUMEN

Alternating hemiplegia of childhood (AHC) is a rare neurodevelopment disorder that is typically characterized by debilitating episodic attacks of hemiplegia, seizures, and intellectual disability. Over 85% of individuals with AHC have a de novo missense variant in ATP1A3 encoding the catalytic α3 subunit of neuronal Na+/K+ ATPases. The remainder of the patients are genetically unexplained. Here, we used next-generation sequencing to search for the genetic cause of 26 ATP1A3-negative index patients with a clinical presentation of AHC or an AHC-like phenotype. Three patients had affected siblings. Using targeted sequencing of exonic, intronic, and flanking regions of ATP1A3 in 22 of the 26 index patients, we found no ultra-rare variants. Using exome sequencing, we identified the likely genetic diagnosis in 9 probands (35%) in five genes, including RHOBTB2 (n = 3), ATP1A2 (n = 3), ANK3 (n = 1), SCN2A (n = 1), and CHD2 (n = 1). In follow-up investigations, two additional ATP1A3-negative individuals were found to have rare missense SCN2A variants, including one de novo likely pathogenic variant and one likely pathogenic variant for which inheritance could not be determined. Functional evaluation of the variants identified in SCN2A and ATP1A2 supports the pathogenicity of the identified variants. Our data show that genetic variants in various neurodevelopmental genes, including SCN2A, lead to AHC or AHC-like presentation. Still, the majority of ATP1A3-negative AHC or AHC-like patients remain unexplained, suggesting that other mutational mechanisms may account for the phenotype or that cases may be explained by oligo- or polygenic risk factors.


Asunto(s)
Hemiplejía , Mutación Missense , Humanos , Hemiplejía/diagnóstico , Hemiplejía/genética , Secuenciación del Exoma , Mutación , ATPasa Intercambiadora de Sodio-Potasio/genética , Proteínas de Unión al GTP/genética , Proteínas Supresoras de Tumor/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética
2.
Prenat Diagn ; 43(6): 746-755, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37173814

RESUMEN

OBJECTIVE: Recent studies have evaluated prenatal exome sequencing (pES) for abnormalities of the corpus callosum (CC). The objective of this study was to compare imaging phenotype and genotype findings. METHOD: This multicenter retrospective study included fetuses with abnormalities of the CC between 2018 and 2020 by ultrasound and/or MRI and for which pES was performed. Abnormalities of the CC were classified as complete (cACC) or partial (pACC) agenesis of the CC, short CC (sCC), callosal dysgenesis (CD), interhemispheric cyst (IHC), or pericallosal lipoma (PL), isolated or not. Only pathogenic (class 5) or likely pathogenic (class 4) (P/LP) variants were considered. RESULTS: 113 fetuses were included. pES identified P/LP variants for 3/29 isolated cACC, 3/19 isolated pACC, 0/10 isolated sCC, 5/10 isolated CD, 5/13 non-isolated cACC, 3/6 non-isolated pACC, 8/11 non-isolated CD and 0/12 isolated IHC and PL. Associated cerebellar abnormalities were significantly associated with P/LP variants (OR = 7.312, p = 0.027). No correlation was found between phenotype and genotype, except for fetuses with a tubulinopathy and an MTOR pathogenic variant. CONCLUSIONS: P/LP variants were more frequent in CD and in non-isolated abnormalities of the CC. No such variants were detected for fetuses with isolated sCC, IHC and PL.


Asunto(s)
Cuerpo Calloso , Ultrasonografía Prenatal , Embarazo , Femenino , Humanos , Cuerpo Calloso/diagnóstico por imagen , Estudios Retrospectivos , Ultrasonografía Prenatal/métodos , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/genética , Imagen por Resonancia Magnética/métodos , Genotipo , Fenotipo , Canales de Cloruro , Diagnóstico Prenatal
3.
Am J Intellect Dev Disabil ; 128(2): 176-180, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36807475

RESUMEN

The aim of this study was to develop a transcultural adaptation of the Diagnostic Adaptive Behavior Scale (DABS) in French and to perform a field evaluation of the adapted version of the tool (DABS-F). Eight experts in intellectual and developmental disabilities (IDD) and two professional translators formed two committees to translate the instrument. Thirty-four independent experts in IDD rated the clarity and relevance of the DABS-F. Results indicated complete agreement between the two translation committees and also demonstrated very satisfactory levels of clarity and relevance for the DABS-F. The latter result can be considered as evidence of the content validity of the adapted tool. Adjustments for the few items that presented less satisfactory results are discussed.


Asunto(s)
Adaptación Psicológica , Traducción , Humanos , Psicometría , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
4.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34114611

RESUMEN

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
5.
Eur J Paediatr Neurol ; 33: 75-85, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34102571

RESUMEN

CACNA1A pathogenic mutations are involved in various neurological phenotypes including episodic ataxia (EA2), spinocerebellar ataxia (SCA6), and familial hemiplegic migraine (FHM1). Epilepsy is poorly documented. We studied 18 patients (10 males) carrying de novo or inherited CACNA1A mutations, with median age of 2,5 years at epilepsy onset. Eight mutations were novel. Two variants known leading to gain of function (GOF) were found in 5 patients. Five other patients had non-sense variants leading to loss of function (LOF). Seizures were most often revealed by either status epilepticus (SE) (n = 8), eventually triggered by fever (n = 5), or absences/behavioural arrests (n = 7). Non-epileptic paroxysmal events were frequent and consisted in recurrent hemiplegic accesses (n = 9), jitteriness in the neonatal period (n = 6), and ocular paroxysmal events (n = 9). Most of the patients had early permanent cerebellar dysfunction (n = 16) and early moderate to severe global developmental delay (GDD)/intellectual deficiency (ID) (n = 17). MRI was often abnormal, with cerebellar (n = 8) and/or cerebral (n = 6) atrophy. Stroke-like occurred in 2 cases. Some antiepileptic drugs including topiramate, levetiracetam, lamotrigine and valproate were effective on seizures. Acetazolamide and calcium channel blockers were often effective when used. More than half of the patients had refractory epilepsy. CACNA1A mutation should be evoked in front of 2 main electro-clinical phenotypes that are associated with permanent cerebellar dysfunction and moderate to severe GDD/ID. The first one, found in all 5 patients with GOF variants, is characterized by intractable seizures, early and recurrent SE and hemiplegic accesses. The second, less severe, found in 5 patients with LOF variants, is characterized by refractory early onset absence seizures.


Asunto(s)
Canales de Calcio/genética , Epilepsia , Convulsiones , Ataxia , Preescolar , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Femenino , Humanos , Masculino , Convulsiones/etiología , Convulsiones/genética , Ataxias Espinocerebelosas
6.
Genet Med ; 22(11): 1887-1891, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32565546

RESUMEN

PURPOSE: Abnormality of the corpus callosum (AbnCC) is etiologically a heterogeneous condition and the prognosis in prenatally diagnosed cases is difficult to predict. The purpose of our research was to establish the diagnostic yield using chromosomal microarray (CMA) and exome sequencing (ES) in cases with prenatally diagnosed isolated (iAbnCC) and nonisolated AbnCC (niAbnCC). METHODS: CMA and prenatal trio ES (pES) were done on 65 fetuses with iAbnCC and niAbnCC. Only pathogenic gene variants known to be associated with AbnCC and/or intellectual disability were considered. RESULTS: pES results were available within a median of 21.5 days (9-53 days). A pathogenic single-nucleotide variant (SNV) was identified in 12 cases (18%) and a pathogenic CNV was identified in 3 cases (4.5%). Thus, the genetic etiology was determined in 23% of cases. In all diagnosed cases, the results provided sufficient information regarding the neurodevelopmental prognosis and helped the parents to make an informed decision regarding the outcome of the pregnancy. CONCLUSION: Our results show the significant diagnostic and prognostic contribution of CMA and pES in cases with prenatally diagnosed AbnCC. Further prospective cohort studies with long-term follow-up of the born children will be needed to provide accurate prenatal counseling after a negative pES result.


Asunto(s)
Cuerpo Calloso , Exoma , Niño , Cuerpo Calloso/diagnóstico por imagen , Exoma/genética , Femenino , Feto/diagnóstico por imagen , Humanos , Embarazo , Estudios Prospectivos , Ultrasonografía Prenatal
7.
Epileptic Disord ; 22(3): 327-335, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32597768

RESUMEN

Epilepsy of infancy with migrating focal seizures (EIMFS) is now a well-recognized early-onset syndrome included in the ILAE classification of the epilepsies. KCNT1 gain-of-function variants are identified in about half of patients. In the remaining cases, the underlying genetic component is far more heterogeneous with sporadic mutations occasionally reported in SCN1A, SCN2A, SLC12A5, TBC1D24, PLCB1, SLC25A22, and KCNQ2. Here, we report, for the first time, a homozygous deleterious variant in the FARS2 gene, identified using a 115-gene panel for monogenic epilepsies, in a patient with EIMFS. This boy was the second child born to healthy consanguineous parents. The first seizures occurred at six weeks of age. The patient rapidly developed severe epilepsy with focal discharges on EEG, migrating from one brain region to another, highly suggestive of EIMFS. At five months of age, he had daily multifocal clonic seizures and erratic myoclonic fits, which were not consistently related to spikes or spike-and-wave discharges. Neurological status was severely abnormal from onset and the patient died at 10 months of age from respiratory distress. Using the gene panel, a homozygous missense variant of FARS2 was identified, at Chr6 (GRCh37):g.5404829C>T, c.667C>T (NM_001318872.1), inherited from both parents, leading to an arginine-to-cysteine substitution, p.(Arg223Cys). FARS2 is a member of the mitochondrial aminoacyl tRNA transferase (ARS) enzymes. ARS variants are increasingly recognized causes of early-onset epileptic and neurodevelopmental encephalopathies, however, the associated epileptic phenotype is not completely described. This case shows that FARS2-related seizures can mimic EIMFS in the early stage of the disease. Furthermore, in the setting of migrating focal seizures of infancy, FARS2 should be considered as a further candidate gene, and increased lactate level and occurrence of refractory myoclonic seizures are possible key features to suspect FARS deficiency.


Asunto(s)
Proteínas Mitocondriales/genética , Fenilalanina-ARNt Ligasa/genética , Convulsiones/genética , Convulsiones/fisiopatología , Edad de Inicio , Codón sin Sentido , Consanguinidad , Resultado Fatal , Humanos , Lactante , Masculino
8.
Neurology ; 94(13): e1378-e1385, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32123049

RESUMEN

OBJECTIVE: To assess nonparoxysmal movement disorders in ATP1A3 mutation-positive patients with alternating hemiplegia of childhood (AHC). METHODS: Twenty-eight patients underwent neurologic examination with particular focus on movement phenomenology by a specialist in movement disorders. Video recordings were reviewed by another movement disorders specialist and data were correlated with patients' characteristics. RESULTS: Ten patients were diagnosed with chorea, 16 with dystonia (nonparoxysmal), 4 with myoclonus, and 2 with ataxia. Nine patients had more than one movement disorder and 8 patients had none. The degree of movement disorder was moderate to severe in 12/28 patients. At inclusion, dystonic patients (n = 16) were older (p = 0.007) than nondystonic patients. Moreover, patients (n = 18) with dystonia or chorea, or both, had earlier disease onset (p = 0.042) and more severe neurologic impairment (p = 0.012), but this did not correlate with genotype. All patients presented with hypotonia, which was characterized as moderate or severe in 16/28. Patients with dystonia or chorea (n = 18) had more pronounced hypotonia (p = 0.011). Bradykinesia (n = 16) was associated with an early age at assessment (p < 0.01). Significant dysarthria was diagnosed in 11/25 cases. A history of acute neurologic deterioration and further regression of motor function, typically after a stressful event, was reported in 7 patients. CONCLUSIONS: Despite the relatively limited number of patients and the cross-sectional nature of the study, this detailed categorization of movement disorders in patients with AHC offers valuable insight into their precise characterization. Further longitudinal studies on this topic are needed.


Asunto(s)
Hemiplejía/complicaciones , Trastornos del Movimiento/genética , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Masculino , Mutación , ATPasa Intercambiadora de Sodio-Potasio/genética , Adulto Joven
9.
Mol Genet Metab Rep ; 21: 100509, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720226

RESUMEN

We report the case of a girl with Asparagine synthetase deficiency, an autosomal recessive metabolic disorder characterized by severe microcephaly and epileptic encephalopathy secondary to pathogenic variants in the ASNS gene. Genetic explorations found a deletion of ASNS and a missense variant on the other allele detected respectively by array comparative genomic hybridization (CGH) and Sanger sequencing. Amino acid analysis provided a biochemical confirmation. Previous cases of Asparagine synthetase deficiency were diagnosed though exome Sequencing. The combination of several techniques (array CGH, sequencing, and biochemical analysis) improves the opportunity to provide accurate diagnosis.

10.
Eur J Hum Genet ; 25(4): 423-431, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28176767

RESUMEN

Fragile-X syndrome (FXS) is a frequent genetic form of intellectual disability (ID). The main recurrent mutagenic mechanism causing FXS is the expansion of a CGG repeat sequence in the 5'-UTR of the FMR1 gene, therefore, routinely tested in ID patients. We report here three FMR1 intragenic pathogenic variants not affecting this sequence, identified using high-throughput sequencing (HTS): a previously reported hemizygous deletion encompassing the last exon of FMR1, too small to be detected by array-CGH and inducing decreased expression of a truncated form of FMRP protein, in three brothers with ID (family 1) and two splice variants in boys with sporadic ID: a de novo variant c.990+1G>A (family 2) and a maternally inherited c.420-8A>G variant (family 3). After clinical reevaluation, the five patients presented features consistent with FXS (mean Hagerman's scores=15). We conducted a systematic review of all rare non-synonymous variants previously reported in FMR1 in ID patients and showed that six of them are convincing pathogenic variants. This study suggests that intragenic FMR1 variants, although much less frequent than CGG expansions, are a significant mutational mechanism leading to FXS and demonstrates the interest of HTS approaches to detect them in ID patients with a negative standard work-up.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Mutación , Femenino , Síndrome del Cromosoma X Frágil/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Empalme del ARN , Hermanos
11.
Am J Med Genet A ; 167A(8): 1908-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25846674

RESUMEN

Intellectual disability is a neurodevelopmental disorder of impaired adaptive skills and low intelligence quotient. The overall prevalence is estimated at 2-3% in the general population with extreme clinical and genetic heterogeneity, and it has been associated with possibly causative mutations in more than 700 identified genes. In a recent review, among over 100 X-linked intellectual disability causative genes, eight were reported as "awaiting replication." Exome sequencing in a large family identified a missense mutation in RPL10 highly suggestive of X-linked intellectual disability. Herein, we report on the clinical description of four affected males. All patients presented apparent intellectual disability (4/4), psychomotor delay (4/4) with syndromic features including amniotic fluid excess (3/4), microcephaly (2/4), urogenital anomalies (3/4), cerebellar syndrome (2/4), and facial dysmorphism. In the literature, two mutations were reported in three families with affected males presenting with autism. This report confirms the implication of RPL10 mutations in neurodevelopmental disorders and extends the associated clinical spectrum from autism to syndromic intellectual disability.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Proteínas Ribosómicas/genética , Femenino , Humanos , Masculino , Linaje , Proteína Ribosómica L10
12.
Eur J Med Genet ; 56(5): 270-3, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23416624

RESUMEN

We report the case of a 33-year-old pregnant woman. The third-trimester ultrasound scan during pregnancy revealed fetal bilateral ventricular dilatation, macrosomia and a transverse diameter of the cerebellum at the 30th centile. A brain MRI scan at 31 weeks of gestation led to a diagnosis of hypoplasia of the cerebellar vermis without hemisphere abnormalities and a non compressive expansion of the cisterna magna. The fetal karyotype was 46,XX. The pregnancy was terminated and array-CGH analysis of the fetus identified a 238 kb de novo deletion on chromosome Xp12, encompassing part of OPHN1 gene. Further studies revealed a completely skewed pattern of X inactivation. OPHN1 is involved in X-linked mental retardation (XLMR) with cerebellar hypoplasia and encodes a Rho-GTPase-activating protein called oligophrenin-1, which is produced throughout the developing mouse brain and in the hippocampus and Purkinje cells of the cerebellum in adult mice. Neuropathological examination of the female fetus revealed cerebellar hypoplasia and the heterotopia of Purkinje cells at multiple sites in the white matter of the cerebellum. This condition mostly affects male fetuses in humans. We report here the first case of a de novo partial deletion of OPHN1, with radiological and neuropathological examination, in a female fetus.


Asunto(s)
Cerebelo/anomalías , Proteínas del Citoesqueleto/genética , Feto/anomalías , Proteínas Activadoras de GTPasa/genética , Eliminación de Gen , Enfermedades del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Proteínas Nucleares/genética , Adulto , Cerebelo/patología , Cisterna Magna/anomalías , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Femenino , Humanos , Cariotipificación , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Enfermedades del Sistema Nervioso/patología , Malformaciones del Sistema Nervioso/patología , Embarazo , Células de Purkinje/metabolismo , Inactivación del Cromosoma X
13.
Orphanet J Rare Dis ; 7: 96, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23234264

RESUMEN

A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability.


Asunto(s)
Creatina/deficiencia , Creatina/orina , Enfermedades del Sistema Nervioso/etiología , Creatinina/orina , Femenino , Glicina/análogos & derivados , Glicina/orina , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Enfermedades del Sistema Nervioso/orina , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...