Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Wiley Interdiscip Rev RNA ; 5(4): 461-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24706556

RESUMEN

The aminoacyl-tRNA synthetases are prominently known for their classic function in the first step of protein synthesis, where they bear the responsibility of setting the genetic code. Each enzyme is exquisitely adapted to covalently link a single standard amino acid to its cognate set of tRNA isoacceptors. These ancient enzymes have evolved idiosyncratically to host alternate activities that go far beyond their aminoacylation role and impact a wide range of other metabolic pathways and cell signaling processes. The family of aminoacyl-tRNA synthetases has also been suggested as a remarkable scaffold to incorporate new domains that would drive evolution and the emergence of new organisms with more complex function. Because they are essential, the tRNA synthetases have served as pharmaceutical targets for drug and antibiotic development. The recent unfolding of novel important functions for this family of proteins offers new and promising pathways for therapeutic development to treat diverse human diseases.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/metabolismo , Aminoacilación de ARN de Transferencia , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Humanos , Terapia Molecular Dirigida
2.
J Biol Chem ; 287(18): 14772-81, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22383526

RESUMEN

The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing.


Asunto(s)
Aminoacil-ARNt Sintetasas/biosíntesis , Proteínas Mitocondriales/biosíntesis , Edición de ARN/fisiología , Empalme del ARN/fisiología , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/enzimología , Aminoacil-ARNt Sintetasas/genética , Proteínas Mitocondriales/genética , Estructura Terciaria de Proteína , ARN/genética , ARN de Hongos/genética , ARN Mensajero/genética , ARN Mitocondrial , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 281(44): 33217-25, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16956879

RESUMEN

Aminoacyl-tRNA synthetases are a family of enzymes that are responsible for translating the genetic code in the first step of protein synthesis. Some aminoacyl-tRNA synthetases have editing activities to clear their mistakes and enhance fidelity. Leucyl-tRNA synthetases have a hydrolytic active site that resides in a discrete amino acid editing domain called CP1. Mutational analysis within yeast mitochondrial leucyl-tRNA synthetase showed that the enzyme has maintained an editing active site that is competent for post-transfer editing of mischarged tRNA similar to other leucyl-tRNA synthetases. These mutations that altered or abolished leucyl-tRNA synthetase editing were introduced into complementation assays. Cell viability and mitochondrial function were largely unaffected in the presence of high levels of non-leucine amino acids. In contrast, these editing-defective mutations limited cell viability in Escherichia coli. It is possible that the yeast mitochondria have evolved to tolerate lower levels of fidelity in protein synthesis or have developed alternate mechanisms to enhance discrimination of leucine from non-cognate amino acids that can be misactivated by leucyl-tRNA synthetase.


Asunto(s)
Aminoácidos/metabolismo , Leucina-ARNt Ligasa/metabolismo , Empalme del ARN/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Letales/genética , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Alineación de Secuencia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...