Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Enzymol ; 428: 63-76, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17875412

RESUMEN

To maximize the probability of survival and proliferation, cells coordinate various intracellular activities in response to changes in the extracellular environment. Eukaryotic cells transduce diverse cellular stimuli by multiple mitogen-activated protein kinase (MAPK) cascades. Exposure of cells to stress results in rapid activation of a highly conserved family of MAPKs, known as stress-activated protein kinases (SAPKs). Activation of SAPKs results in the generation of a set of adaptive responses that leads to the modulation of several aspects of cell physiology essential for cell survival, such as gene expression, translation, and morphogenesis. This chapter proposes that regulation of cell cycle progression is another general stress response critical for cell survival. Studies from yeast, both Schizosaccharomyces pombe and Saccharomyces cerevisiae, have served to start understanding how SAPKs control cell cycle progression in response to stress.


Asunto(s)
Ciclo Celular/fisiología , Presión Osmótica , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/fisiología , Anafase/efectos de los fármacos , Quinasas Ciclina-Dependientes/fisiología , Fase G1/fisiología , Fase G2/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Quinasas Quinasa Quinasa PAM/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Telofase/efectos de los fármacos
2.
J Physiol ; 536(Pt 1): 79-88, 2001 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11579158

RESUMEN

1. The regulation of Maxi Cl(-) channels by 17beta-oestradiol and non-steroidal triphenylethylene antioestrogens represents a rapid, non-classical effect of these compounds. In the present study we have investigated the signalling pathways used for the regulation of Maxi Cl(-) channel activity by oestrogens and antioestrogens in C1300 neuroblastoma cells. 2. Whole-cell Maxi Cl(-) currents were readily and reversibly activated by tamoxifen, toremifene and the membrane-impermeant ethyl-bromide tamoxifen, only when applied to the extracellular medium. 3. Pre-treatment of C1300 cells with oestrogen or cAMP prevented the antioestrogen-induced activation of Maxi Cl(-) channels. The inhibitory effect of 17beta-oestradiol and cAMP was abolished by the kinase inhibitor staurosporine. 4. Current activation was unaffected by the removal of intracellular Ca(2+) and Mg(2+), but was completely abolished in the presence of okadaic acid. These results are consistent with the participation of an okadaic acid-sensitive serine/threonine protein phosphatase in the activation of Maxi Cl(-) channels. However, neither oestrogen or antioestrogen treatment modified the total activity of the two major serine/threonine phosphatases, PP1 and PP2A, in C1300 cells. 5. Although the role of these Maxi Cl(-) channels remains unknown, our findings suggest strongly that their modulation by oestrogens and antioestrogens is linked to intracellular signalling pathways.


Asunto(s)
Carcinógenos/farmacología , Canales de Cloruro/metabolismo , Antagonistas de Estrógenos/farmacología , Neuroblastoma , Ácido Ocadaico/farmacología , Estilbenos/farmacología , Animales , Cloruros/metabolismo , AMP Cíclico/farmacología , Inhibidores Enzimáticos/farmacología , Estradiol/farmacología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Técnicas de Placa-Clamp , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estaurosporina/farmacología , Tamoxifeno/farmacología , Toremifeno/farmacología , Células Tumorales Cultivadas
3.
J Biol Chem ; 276(40): 37373-8, 2001 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-11500510

RESUMEN

The Sko1p transcriptional repressor regulates a subset of osmoinducible stress defense genes in Saccharomyces cerevisiae by binding to cAMP-responsive elements. We have reported previously that in response to stress Sko1p is phosphorylated by the stress-activated Hog1p mitogen-activated protein kinase, which disrupts its interaction with the Ssn6p x Tup1p corepressor. Here we report that other mechanisms are essential for the regulation of the Sko1p repressor activity upon stress. The nuclear localization of Sko1p depends on the stress-inhibited protein kinase A (PKA). Sko1p is localized in the nucleus of unstressed cells, and it redistributes to the cytosol upon severe salt stress (1 m NaCl). Yeast mutants with low PKA activity localize Sko1p to the cytoplasm in the absence of stress and exhibit deregulated expression of cAMP-responsive element-regulated genes. The central part (315) of Sko1p, containing the PKA phosphorylation sites and the basic domain-leucine zipper domain, is essential for its nuclear localization. Salt-induced export of Sko1p from the nucleus is independent of Hog1p and of the Bcy1p regulatory subunit of PKA. Furthermore, phosphorylation by PKA slightly enhanced DNA binding affinity of Sko1p in vitro, whereas Sko1p dimerization in vivo is not regulated by stress. Sko1p repressor activity is associated to its binding to the Ssn6p x Tup1p complex. Interestingly, the Sko1p NH(2) terminus (1), containing the Hog1p phosphorylation sites, associates in vivo with Tup1p in the absence of Ssn6p, suggesting that Sko1p represses gene transcription by interacting directly with the Tup1p subunit of the Ssn6p x Tup1p complex.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Dimerización , Proteínas Fúngicas/metabolismo , Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Fosforilación , Estructura Terciaria de Proteína
4.
EMBO J ; 20(5): 1123-33, 2001 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11230135

RESUMEN

Exposure of yeast to increases in extracellular osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which is essential for the induction of gene expression required for cell survival upon osmotic stress. Several genes are regulated in response to osmotic stress by Sko1, a transcriptional repressor of the ATF/CREB family. We show by in vivo coprecipitation and phosphorylation studies that Sko1 and Hog1 interact and that Sko1 is phosphorylated upon osmotic stress in a Hog1-dependent manner. Hog1 phosphorylates Sko1 in vitro at multiple sites within the N-terminal region. Phosphorylation of Sko1 disrupts the Sko1-Ssn6-Tup1 repressor complex, and consistently, a mutant allele of Sko1, unphosphorylatable by Hog1, exhibits less derepression than the wild type. Interestingly, Sko1 repressor activity is further enhanced in strains with high protein kinase A (PKA) activity. PKA phosphorylates Sko1 near the bZIP domain and mutation of these sites eliminates modulation of Sko1 responses to high PKA activity. Thus, Sko1 transcriptional repression is controlled directly by the Hog1 MAPK in response to stress, and this effect is further modulated by an independent signaling mechanism through the PKA pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Levaduras/genética , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/metabolismo , Genes Reporteros , Immunoblotting , Proteínas Quinasas Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Mutación , Presión Osmótica , Fosforilación , Pruebas de Precipitina , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión , Proteínas Represoras/química , Proteínas Represoras/genética , Elementos de Respuesta/genética , Levaduras/metabolismo
5.
EMBO J ; 19(17): 4623-31, 2000 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10970855

RESUMEN

The adaptive response to hyperosmotic stress in yeast, termed the high osmolarity glycerol (HOG) response, is mediated by two independent upstream pathways that converge on the Pbs2 MAP kinase kinase (MAPKK), leading to the activation of the Hog1 MAP kinase. One branch is dependent on the Sho1 transmembrane protein, whose primary role was found to be the binding and translocation of the Pbs2 MAPKK to the plasma membrane, and specifically to sites of polarized growth. The yeast PAK homolog Ste20 is essential for the Sho1-dependent activation of the Hog1 MAP kinase in response to severe osmotic stress. This function of Ste20 in the HOG pathway requires binding of the small GTPase Cdc42. Overexpression of Cdc42 partially complements the osmosensitivity of ste20Delta mutants, perhaps by activating another PAK-like kinase, while a dominant-negative Cdc42 mutant inhibited signaling through the SHO1 branch of the HOG pathway. Since activated Cdc42 translocates Ste20 to sites of polarized growth, the upstream and downstream elements of the HOG pathway are brought together through the membrane targeting function of Sho1 and Cdc42.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Activación Enzimática , Péptidos y Proteínas de Señalización Intracelular , Quinasas Quinasa Quinasa PAM , Sistema de Señalización de MAP Quinasas , Unión Proteica
6.
Mol Cell Biol ; 20(11): 3887-95, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10805732

RESUMEN

Exposure of yeast cells to increases in extracellular osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK). Activation of Hog1 MAPK results in induction of a set of osmoadaptive responses, which allow cells to survive in high-osmolarity environments. Little is known about how the MAPK activation results in induction of these responses, mainly because no direct substrates for Hog1 have been reported. We conducted a two-hybrid screening using Hog1 as a bait to identify substrates for the MAPK, and the Rck2 protein kinase was identified as an interactor for Hog1. Both two-hybrid analyses and coprecipitation assays demonstrated that Hog1 binds strongly to the C-terminal region of Rck2. Upon osmotic stress, Rck2 was phosphorylated in vivo in a Hog1-dependent manner. Furthermore, purified Hog1 was able to phosphorylate Rck2 when activated both in vivo and in vitro. Rck2 phosphorylation occurred specifically at Ser519, a residue located within the C-terminal putative autoinhibitory domain. Interestingly, phosphorylation at Ser519 by Hog1 resulted in an increase of Rck2 kinase activity. Overexpression of Rck2 partially suppressed the osmosensitive phenotype of hog1Delta and pbs2Delta cells, suggesting that Rck2 is acting downstream of Hog1. Consistently, growth arrest caused by hyperactivation of the Hog1 MAPK was abolished by deletion of the RCK2 gene. Furthermore, overexpression of a catalytically impaired (presumably dominant inhibitory) Rck2 kinase resulted in a decrease of osmotolerance in wild-type cells but not in hog1Delta cells. Taken together, our data suggest that Rck2 acts downstream of Hog1, controlling a subset of the responses induced by the MAPK upon osmotic stress.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Alelos , Sitios de Unión , Expresión Génica , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Ósmosis , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Transducción de Señal , Especificidad por Sustrato
7.
J Biol Chem ; 275(23): 17249-55, 2000 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-10748181

RESUMEN

Adaptation to changes in extracellular salinity is a critical event for cell survival. Genome-wide DNA chip analysis has been used to analyze the transcriptional response of yeast cells to saline stress. About 7% of the genes encoded in the yeast genome are induced more than 5-fold after a mild and brief saline shock (0.4 m NaCl, 10 min). Interestingly, most responsive genes showed a very transient expression pattern, as mRNA levels dramatically declined after 20 min in the presence of stress. A quite similar set of genes increased expression in cells subjected to higher saline concentrations (0.8 m NaCl), although in this case the response was delayed. Therefore, our data show that cells respond to saline stress by inducing the expression of a very large number of genes and suggest that stress adaptation requires regulation of many cellular aspects. The transcriptional induction of most genes that are strongly responsive to salt stress was highly or fully dependent on the presence of the stress-activated mitogen-activated protein kinase Hog1, indicating that the Hog1-mediated signaling pathway plays a key role in global gene regulation under saline stress conditions.


Asunto(s)
Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Solución Salina Hipertónica/farmacología , Transcripción Genética , Cinética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , ARN Mensajero/genética , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Tiempo
8.
EMBO J ; 17(19): 5606-14, 1998 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-9755161

RESUMEN

MAP kinase signaling modules serve to transduce extracellular signals to the nucleus of eukaryotic cells, but little is known about how signals cross the nuclear envelope. Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 MAP kinase cascade, which is composed of three tiers of protein kinases, namely the SSK2, SSK22 and STE11 MAPKKKs, the PBS2 MAPKK, and the HOG1 MAPK. Using green fluorescent protein (GFP) fusions of these kinases, we found that HOG1, PBS2 and STE11 localize to the cytoplasm of unstressed cells. Following osmotic stress, HOG1, but neither PBS2 nor STE11, translocates into the nucleus. HOG1 translocation occurs very rapidly, is transient, and correlates with the phosphorylation and activation of the MAP kinase by its MAPKK. HOG1 phosphorylation is necessary and sufficient for nuclear translocation, because a catalytically inactive kinase when phosphorylated is translocated to the nucleus as efficiently as the wild-type. Nuclear import of the MAPK under stress conditions requires the activity of the small GTP binding protein Ran-GSP1, but not the NLS-binding importin alpha/beta heterodimer. Rather, HOG1 import requires the activity of a gene, NMD5, that encodes a novel importin beta homolog. Similarly, export of dephosphorylated HOG1 from the nucleus requires the activity of the NES receptor XPO1/CRM1. Our findings define the requirements for the regulated nuclear transport of a stress-activated MAP kinase.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Proteínas de Unión al GTP Monoméricas , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Transporte Biológico , Compartimento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Carioferinas , Presión Osmótica , Fosforilación , Proteínas Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces , Transducción de Señal , Factores de Transcripción/metabolismo , Proteína Exportina 1
9.
Mol Cell Biol ; 18(10): 5788-96, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9742096

RESUMEN

Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 mitogen-activated protein (MAP) kinase cascade, which is composed of three tiers of protein kinases: (i) the SSK2, SSK22, and STE11 MAP kinase kinase kinases (MAPKKKs), (ii) the PBS2 MAPKK, and (iii) the HOG1 MAP kinase. Activation of the MAP kinase cascade is mediated by two upstream mechanisms. The SLN1-YPD1-SSK1 two-component osmosensor activates the SSK2 and SSK22 MAPKKKs by direct interaction of the SSK1 response regulator with these MAPKKKs. The second mechanism of HOG1 MAP kinase activation is independent of the two-component osmosensor and involves the SHO1 transmembrane protein and the STE11 MAPKKK. Only PBS2 and HOG1 are common to the two mechanisms. We conducted an exhaustive mutant screening to identify additional elements required for activation of STE11 by osmotic stress. We found that strains with mutations in the STE50 gene, in combination with ssk2Delta ssk22Delta mutations, were unable to induce HOG1 phosphorylation after osmotic stress. Both two-hybrid analyses and coprecipitation assays demonstrated that the N-terminal domain of STE50 binds strongly to the N-terminal domain of STE11. The binding of STE50 to STE11 is constitutive and is not affected by osmotic stress. Furthermore, the two proteins relocalize similarly after osmotic shock. It was concluded that STE50 fulfills an essential role in the activation of the high-osmolarity glycerol response pathway by acting as an integral subunit of the STE11 MAPKKK.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas Activadas por Mitógenos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Factores de Transcripción/metabolismo , Sitios de Unión , Activación Enzimática , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Glicerol/metabolismo , Quinasas Quinasa Quinasa PAM , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...