RESUMEN
Introduction: Differentially polarized macrophages, especially YM1+ and MHCII+ macrophages, play an important role in asthma development. The origin of these polarized macrophages has not been elucidated yet. We therefore aimed to investigate how proliferation, monocyte recruitment, and/or switching of polarization states contribute to this specific pool of polarized interstitial and alveolar macrophages during development of house dust mite (HDM)-induced allergic lung inflammation in mice. Methods: Male and female mice were first treated intranasally with PKH26 to label lung-resident macrophages and were then exposed to either HDM or phosphate-buffered saline (PBS) for two weeks. Different myeloid immune cell types were quantified in lung tissue and blood using flow cytometry. Results: We found that macrophage polarization only starts up in the second week of HDM exposures. Before this happened, unpolarized alveolar and interstitial macrophages transiently increased in HDM-exposed mice. This transient increase was mostly local proliferation of alveolar macrophages, while interstitial macrophages also contained unlabeled macrophages suggesting monocyte contribution. After two weeks of exposures, the number of interstitial and alveolar macrophages was similar between HDM and PBS-exposed mice, but the distribution of polarization states was remarkably different. HDM-exposed mice selectively developed YM1+ alveolar macrophages and MHCII-hi interstitial macrophages while nonpolarized macrophages were lost compared to PBS-exposed mice. Discussion: In this HDM model we have shown that development of a polarized macrophage pool during allergic inflammation is first dependent on proliferation of nonpolarized tissue-resident macrophages with some help of infiltrating unlabeled cells, presumably circulating monocytes. These nonpolarized macrophages then acquire their polarized phenotype by upregulating YM1 on alveolar macrophages and MHCII on interstitial macrophages. This novel information will help us to better understand the role of macrophages in asthma and designing therapeutic strategies targeting macrophage functions.
Asunto(s)
Asma , Neumonía , Eosinofilia Pulmonar , Femenino , Masculino , Ratones , Animales , Pulmón , Macrófagos , Macrófagos Alveolares , Pyroglyphidae , Dermatophagoides pteronyssinusRESUMEN
Alkaline phosphatase (AP) activity is highly upregulated in plasma during liver diseases. Previously, we demonstrated that AP is able to detoxify lipopolysaccharide (LPS) by dephosphorylating its lipid A moiety. Because a role of gut-derived LPS in liver fibrogenesis has become evident, we now examined the relevance of phosphate groups in the lipid A moiety in this process. The effects of mono-phosphoryl and di-phosphoryl lipid A (MPLA and DPLA, respectively) were studied in vitro and LPS-dephosphorylating activity was studied in normal and fibrotic mouse and human livers. The effects of intestinal AP were studied in mice with CCL4-induced liver fibrosis. DPLA strongly stimulated fibrogenic and inflammatory activities in primary rat hepatic stellate cells (rHSCs) and RAW264.7 macrophages with similar potency as full length LPS. However, MPLA did not affect any of the parameters. LPS-dephosphorylating activity was found in mouse and human livers and was strongly increased during fibrogenesis. Treatment of fibrotic mice with intravenous intestinal-AP significantly attenuated intrahepatic desmin+- and αSMA+ -HSC and CD68+- macrophage accumulation. In conclusion, the lack of biological activity of MPLA, contrasting with the profound activities of DPLA, shows the relevance of LPS-dephosphorylating activity. The upregulation of LPS-dephosphorylating activity in fibrotic livers and the protective effects of exogenous AP during fibrogenesis indicate an important physiological role of intestinal-derived AP during liver fibrosis.
Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Lípido A/metabolismo , Lipopolisacáridos/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/metabolismo , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Ratas , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Osteoprotegerin (OPG) serum levels are associated with liver fibrogenesis and have been proposed as a biomarker for diagnosis. However, the source and role of OPG in liver fibrosis are unknown, as is the question of whether OPG expression responds to treatment. Therefore, we aimed to elucidate the fibrotic regulation of OPG production and its possible function in human and mouse livers. OPG levels were significantly higher in lysates of human and mouse fibrotic livers compared to healthy livers. Hepatic OPG expression localized in cirrhotic collagenous bands in and around myofibroblasts. Single cell sequencing of murine liver cells showed hepatic stellate cells (HSC) to be the main producers of OPG in healthy livers. Using mouse precision-cut liver slices, we found OPG production induced by transforming growth factor ß1 (TGFß1) stimulation. Moreover, OPG itself stimulated expression of genes associated with fibrogenesis in liver slices through TGFß1, suggesting profibrotic activity of OPG. Resolution of fibrosis in mice was associated with decreased production of OPG compared to ongoing fibrosis. OPG may stimulate fibrogenesis through TGFß1 and is associated with the degree of fibrogenesis. It should therefore be investigated further as a possible drug target for liver fibrosis or biomarker for treatment success of novel antifibrotics.
RESUMEN
The pivotal cell involved in the pathogenesis of liver fibrosis, i.e., the activated hepatic stellate cell (HSC), has a wide range of activities during the initiation, progression and even regression of the disease. These HSC-related activities encompass cellular activation, matrix synthesis and degradation, proliferation, contraction, chemotaxis and inflammatory signaling. When determining the in vitro and in vivo effectivity of novel antifibrotic therapies, the readout is currently mainly based on gene and protein levels of α-smooth muscle actin (α-SMA) and the fibrillar collagens (type I and III). We advocate for a more comprehensive approach in addition to these markers when screening potential antifibrotic drugs that interfere with HSCs. Therefore, we aimed to develop a gene panel for human in vitro and ex vivo drug screening models, addressing each of the HSC-activities with at least one gene, comprising, in total, 16 genes. We determined the gene expression in various human stellate cells, ranging from primary cells to cell lines with an HSC-origin, and human liver slices and stimulated them with two key profibrotic factors, i.e., transforming growth factor ß (TGFß) or platelet-derived growth factor BB (PDGF-BB). We demonstrated that freshly isolated HSCs showed the strongest and highest variety of responses to these profibrotic stimuli, in particular following PDGF-BB stimulation, while cell lines were limited in their responses. Moreover, we verified these gene expression profiles in human precision-cut liver slices and showed similarities with the TGFß- and PDGF-BB-related fibrotic responses, as observed in the primary HSCs. With this study, we encourage researchers to get off the beaten track when testing antifibrotic compounds by including more HSC-related markers in their future work. This way, potential compounds will be screened more extensively, which might increase the likelihood of developing effective antifibrotic drugs.
RESUMEN
Exchange protein activated by cAMP (Epac-1) is an important signaling mechanism for cAMP-mediated effects, yet factors that change Epac-1 levels are unknown. Such factors are relevant because it has been postulated that Epac-1 directly affects fibrogenesis. Prostaglandin E2 (PGE2) is a well-known cAMP activator, and we therefore studied the effects of this cyclo-oxygenase product on Epac-1 expression and on fibrogenesis within the liver. Liver fibrosis was induced by 8 weeks carbon tetrachloride (CCL4) administration to mice. In the last 2 weeks, mice received vehicle, PGE2, the cyclo-oxygenase-2 inhibitor niflumic acid (NFA), or PGE2 coupled to cell-specific carriers to hepatocytes, Kupffer cells, or hepatic stellate cells (HSC). Results showed antifibrotic effects of PGE2 and profibrotic effects of NFA in CCL4 mice. Western blot analysis revealed reduced Epac-1 protein expression in fibrotic livers of mice and humans compared with healthy livers. PGE2 administration to fibrotic mice completely restored intrahepatic Epac-1 levels and also led to reduced Rho kinase activity, a downstream target of Epac-1. Cell-specific delivery of PGE2 to either hepatocytes, Kupffer cells, or HSC identified the latter cell as the key player in the observed effects on Epac-1 and Rho kinase. No significant alterations in protein kinase A expressions were found. In primary isolated HSC, PGE2 elicited Rap1 translocation reflecting Epac-1 activation, and Epac-1 agonists attenuated platelet-derived growth factor-induced proliferation and migration of these cells. These studies demonstrate that PGE2 enhances Epac-1 activity in HSC, which is associated with significant changes in (myo)fibroblast activities in vitro and in vivo. Therefore, Epac-1 is a potential target for antifibrotic drugs.
Asunto(s)
Dinoprostona/farmacología , Factores de Intercambio de Guanina Nucleótido/biosíntesis , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Regulación hacia Arriba/fisiología , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Niño , Dinoprostona/uso terapéutico , Femenino , Células Hep G2 , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Humanos , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Células 3T3 NIH , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos , Adulto JovenRESUMEN
In healthy lungs, many macrophages are characterized by IL-10 production, and few are characterized by expression of IFN regulatory factor 5 (formerly M1) or YM1 and/or CD206 (formerly M2), whereas in asthma, this balance shifts toward few producing IL-10 and many expressing IFN regulatory factor 5 or YM1/CD206. In this study, we tested whether redressing the balance by reinstating IL-10 production could prevent house dust mite-induced allergic lung inflammation. PGE2 was found to be the best inducer of IL-10 in macrophages in vitro. Mice were then sensitized and challenged to house dust mites during a 2 wk protocol while treated with PGE2 in different ways. Lung inflammation was assessed 3 d after the last house dust mite challenge. House dust mite-exposed mice treated with free PGE2 had fewer infiltrating eosinophils in lungs and lower YM1 serum levels than vehicle-treated mice. Macrophage-specific delivery of PGE2 did not affect lung inflammation. Adoptive transfer of PGE2-treated macrophages led to fewer infiltrating eosinophils, macrophages, (activated) CD4(+), and regulatory T lymphocytes in lungs. Our study shows that the redirection of macrophage polarization by using PGE2 inhibits development of allergic lung inflammation. This beneficial effect of macrophage repolarization is a novel avenue to explore for therapeutic purposes.
Asunto(s)
Asma/prevención & control , Dinoprostona/metabolismo , Eosinófilos/inmunología , Interleucina-10/metabolismo , Macrófagos/inmunología , Neumonía/prevención & control , Pyroglyphidae/patogenicidad , Animales , Asma/etiología , Asma/metabolismo , Células Cultivadas , Eosinófilos/citología , Femenino , Interleucina-10/inmunología , Ratones , Ratones Endogámicos BALB C , Neumonía/etiología , Neumonía/metabolismoRESUMEN
Renal fibrosis leads to end-stage renal disease demanding renal replacement therapy because no adequate treatment exists. IFN-γ is an antifibrotic cytokine that may attenuate renal fibrosis. Systemically administered IFN-γ causes side effects that may be prevented by specific drug targeting. Interstitial myofibroblasts are the effector cells in renal fibrogenesis. Here, we tested the hypothesis that cell-specific delivery of IFN-γ to platelet-derived growth factor receptor ß (PDGFRß)-expressing myofibroblasts attenuates fibrosis in an obstructive nephropathy [unilateral ureteral obstruction (UUO)] mouse model. PEGylated IFN-γ conjugated to PDGFRß-recognizing peptide [(PPB)-polyethylene glycol (PEG)-IFN-γ] was tested in vitro and in vivo for antifibrotic properties and compared with free IFN-γ. PDGFRß expression was >3-fold increased (P < 0.05) in mouse fibrotic UUO kidneys and colocalized with α-smooth muscle actin-positive (SMA(+)) myofibroblasts. In vitro, PPB-PEG-IFN-γ significantly inhibited col1a1, col1a2, and α-SMA mRNA expression in TGF-ß-activated NIH3T3 fibroblasts (P < 0.05). In vivo, PPB-PEG-IFN-γ specifically accumulated in PDGFRß-positive myofibroblasts. PPB-PEG-IFN-γ treatment significantly reduced renal collagen I, fibronectin, and α-SMA mRNA and protein expression. Compared with vehicle treatment, PPB-PEG-IFN-γ preserved tubular morphology, reduced interstitial T-cell infiltration, and attenuated lymphangiogenesis (all P < 0.05) without affecting peritubular capillary density. PPB-PEG-IFN-γ reduced IFN-γ-related side effects as manifested by reduced major histocompatibility complex class II expression in brain tissue (P < 0.05 vs. free IFN-γ). Our findings demonstrate that specific targeting of IFN-γ to PDGFRß-expressing myofibroblasts attenuates renal fibrosis and reduces systemic adverse effects.
Asunto(s)
Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Fibrosis/tratamiento farmacológico , Interferón-alfa/farmacología , Enfermedades Renales/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Polietilenglicoles/farmacología , Animales , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Encéfalo/citología , Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibrosis/metabolismo , Fibrosis/patología , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Macrófagos/citología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/citología , Miofibroblastos/metabolismo , Células 3T3 NIH , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Transforming growth factor-ß (TGF-ß) is a major pro-fibrotic cytokine, causing the overproduction of extracellular matrix molecules in many fibrotic diseases. Inhibition of its type-I receptor (ALK5) has been shown to effectively inhibit fibrosis in animal models. However, apart from its pro-fibrotic effects, TGF-ß also has a regulatory role in the immune system and influences tumorigenesis, which limits the use of inhibitors. We therefore explored the cell-specific delivery of an ALK5-inhibitor to hepatic stellate cells, a key cell in the development of liver fibrosis. We synthesized a conjugate of the ALK5-inhibitor LY-364947 coupled to mannose-6-phosphate human serum albumin (M6PHSA), which binds to the insulin-like growth factor II receptor on activated HSC. The effectivity of the conjugate was evaluated in primary HSC and in an acute liver injury model in mice. In vitro, the free drug and the conjugate significantly inhibited fibrotic markers in HSC. In hepatocytes, TGF-ß-dependent signaling was inhibited by free drug, but not by the conjugate, thus showing its cell-specificity. In vivo, the conjugate localized in desmin-positive cells in the liver and not in hepatocytes or immune cells. In the acute liver injury model in mice, the conjugate reduced fibrogenic markers and collagen deposition more effectively than free drug. We conclude that we can specifically deliver an ALK5-inhibitor to HSC using the M6PHSA carrier and that this targeted drug reduces fibrogenic parameters in vivo, without affecting other cell-types.
Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirroles/farmacología , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Masculino , Ratones , Pirazoles/administración & dosificación , Pirazoles/química , Pirroles/administración & dosificación , Pirroles/química , Ratas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
The use of mushroom extracts has been common practice in traditional medicine for centuries, including the treatment of cancer. Proteins called hydrophobins are very abundant in mushrooms. Here, it was examined whether they have antitumor activity. Hydrophobin SC3 of Schizophyllum commune was injected daily intraperitoneally starting 1 day after tumor induction in two tumor mouse models (sarcoma and melanoma). SC3 reduced the size and weight of the melanoma significantly, but the sarcoma seemed not affected. However, microscopic analysis of the tumors 12 days after induction revealed a strong antitumor effect of SC3 on both tumors. The mitotic activity of the tumor decreased 1.6- (melanoma) to 2.3-fold (sarcoma), while the vital mass decreased 2.3- (melanoma) to 4.3-fold (sarcoma) compared to the control. Treatment did not cause any signs of toxicity. Behavior, animal growth, and weight of organs were similar to animals injected with vehicle, and no histological abnormalities were found in the organs. In vitro cell culture studies revealed no direct cytotoxic effect of SC3 towards sarcoma cells, while cytotoxic activity was observed towards melanoma cells at a high SC3 concentration. Daily treatment with SC3 did not result in detectable levels of anti-SC3 antibodies in the plasma. Instead, a cellular immune response was observed. Incubation of spleen cells with SC3 resulted in a 1.5- to 2.5-fold increase in interleukin-10 and TNF-α mRNA levels. In conclusion, the nontoxic fungal hydrophobin SC3 showed tumor-suppressive activity possibly via immunomodulation and may be of benefit as adjuvant in combination with chemotherapy and radiation.
Asunto(s)
Antineoplásicos/farmacología , Proteínas Fúngicas/farmacología , Animales , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Schizophyllum/químicaRESUMEN
Interferon gamma (IFNγ) is a potent cytokine that displays a variety of anti-viral, anti-proliferative, immunomodulatory, apoptotic and anti-fibrotic functions. However, its clinical use is limited to the treatment of few diseases due to the rapid clearance from the body. PEGylated IFN-alpha formulations are shown to be beneficial in viral hepatitis, but PEGylation of IFNγ to enhance its therapeutic effects in liver fibrosis is not yet explored. Liver fibrosis is characterized by the extensive accumulation of an abnormal extracellular matrix and is the major cause of liver-related morbidity and mortality worldwide. To date, there is no pharmacotherapy available for this disease. We modified IFNγ with different-sized linear PEG molecules (5, 10 and 20kDa) and assessed the biological activity in vitro and in vivo. All PEGylated IFNγ constructs were biologically active and activated IFNγ signaling in vitro as determined with a nitric oxide release assay and a pGAS-Luc reporter plasmid assay, respectively. Similar to IFNγ, all PEGylated IFNγ induced a significant reduction of fibrotic parameters in mouse NIH3T3 fibroblasts as shown with immunohistochemical staining and quantitative PCR analyses. In vivo, the pharmacokinetic profile of radiolabeled (125)I-IFNγ-PEG conjugates revealed a decreased renal clearance and an increased plasma half-life with an increase of PEG size. Moreover, the liver accumulation of PEGylated IFNγ constructs was significantly higher than the unmodified IFNγ, which was also confirmed by increased MHC-II expression in the livers. Furthermore, in a CCl(4)-induced acute liver injury model in mice, PEGylated constructs reduced the early fibrotic parameters more drastically than unmodified IFNγ. Of note, these effects were stronger with higher PEG-sized IFNγ constructs. These data nicely correlated with the pharmacokinetic data. In conclusion, PEGylation significantly improved the pharmacokinetics, liver uptake and anti-fibrotic effects of IFNγ. This study opens new opportunities to exploit the therapeutic applications of PEGylated IFNγ for the treatment of liver fibrosis and other diseases.
Asunto(s)
Antivirales/farmacocinética , Antivirales/uso terapéutico , Interferón gamma/farmacocinética , Interferón gamma/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Polietilenglicoles/química , Animales , Antivirales/química , Línea Celular , Interferón gamma/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIHRESUMEN
UNLABELLED: Liver fibrogenesis is a process tightly controlled by endogenous anti- and pro-fibrogenic factors. Interferon gamma (IFNγ) is a potent antifibrogenic cytokine in vitro and might therefore represent a powerful therapeutic entity. However, its poor pharmacokinetics and adverse effects, due to the presence of IFNγ receptors on nearly all cells, prevented its clinical application so far. We hypothesized that delivery of IFNγ specifically to the disease-inducing cells and concurrently avoiding its binding to nontarget cells might increase therapeutic efficacy and avoid side effects. We conjugated IFNγ to a cyclic peptide recognizing the platelet-derived growth factor beta receptor (PDGFßR) which is strongly up-regulated on activated hepatic stellate cells (HSC), the key effector cells responsible for hepatic fibrogenesis. The IFNγ conjugates were analyzed in vitro for PDGFßR-specific binding and biological effects and in vivo in acute (early) and chronic (progressive and established) carbon-tetrachloride-induced liver fibrosis in mice. The targeted-IFNγ construct showed PDGFßR-specific binding to fibroblasts and HSC and inhibited their activation in vitro. In vivo, the targeted-IFNγ construct attenuated local HSC activation in an acute liver injury model. In the established liver fibrosis model, it not only strongly inhibited fibrogenesis but also induced fibrolysis. In contrast, nontargeted IFNγ was ineffective in both models. Moreover, in contrast to unmodified IFNγ, our engineered targeted-IFNγ did not induce IFNγ-related side effects such as systemic inflammation, hyperthermia, elevated plasma triglyceride levels, and neurotropic effects. CONCLUSION: This study presents a novel HSC-targeted engineered-IFNγ, which in contrast to systemic IFNγ, blocked liver fibrogenesis and is devoid of side effects, by specifically acting on the key pathogenic cells within the liver.
Asunto(s)
Interferón gamma/uso terapéutico , Cirrosis Hepática/prevención & control , Terapia Molecular Dirigida , Animales , Células Cultivadas , Células Estrelladas Hepáticas , Humanos , RatonesRESUMEN
PURPOSE: Rho-kinase regulates activation of hepatic stellate cells (HSC) during liver fibrosis, but the ubiquitous presence of this kinase may hinder examination of its exact role and the therapeutic use of inhibitors. We therefore coupled the Rho-kinase inhibitor Y27632 to a drug carrier that binds the mannose-6-phosphate insulin-like growth factor II (M6P/IGFII)-receptor which is upregulated on activated HSC. METHODS: Y27632 was coupled to mannose-6-phosphate human serum albumin (M6PHSA), and in vitro experiments were performed on primary rat HSC. Biodistribution and effect studies were performed in an acute CCl(4) model in mice. RESULTS: Y27-conjugate remained stable in serum, while drug was efficiently released in liver homogenates. Receptor-blocking studies revealed that it was specifically taken up through the M6P/IGFII-receptor on fibroblasts, and it inhibited expression of fibrotic markers in activated HSC. In vivo, liver drug levels were significantly higher after injection of Y27-conjugate as compared to Y27632, and the conjugate accumulated specifically in HSC. After acute CCl(4)-induced liver injury, Y27-conjugate reduced the local activation of HSC, whereas an equimolar dose of free drug did not. CONCLUSIONS: We conclude that specific targeting of a Rho-kinase inhibitor to HSC leads to enhanced accumulation of the drug in HSC, reducing early fibrogenesis in the liver.
Asunto(s)
Amidas/farmacología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Piridinas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Amidas/química , Animales , Intoxicación por Tetracloruro de Carbono/metabolismo , Células Cultivadas , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/enzimología , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/enzimología , Cirrosis Hepática/inducido químicamente , Masculino , Manosafosfatos/administración & dosificación , Manosafosfatos/química , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Piridinas/química , Ratas , Ratas Wistar , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Distribución TisularRESUMEN
Tumor stromal cells have been recently recognized to contribute to tumor growth. Therefore, we hypothesized that delivery of anticancer drugs to these cells in addition to the tumor cells might treat cancer more effectively. Stromal cells abundantly expressed Platelet-Derived Growth Factor Receptor-beta (PDGFR-beta) in different human tumors as shown with immunohistochemistry. To achieve targeting through PDGFR-beta, we developed a carrier by modifying albumin with a PDGFR-beta recognizing cyclic peptide (pPB-HSA). pPB-HSA specifically bound to PDGFR-beta-expressing 3T3 fibroblasts, C26 and A2780 cancer cells in vitro. Subsequently, doxorubicin was conjugated to pPB-HSA through an acid-sensitive hydrazone linkage. In vitro, Dox-HSA-pPB was taken up by fibroblasts and tumor cells and a short exposure of the conjugate induced cell death in these cells. In vivo, the conjugate rapidly accumulated into PDGFR-beta expressing cells in C26 tumors. Treatment with Dox-HSA-pPB significantly reduced the C26 tumor growth in mice while free doxorubicin treated mice had lower response to the therapy. Furthermore, in contrast to free doxorubicin the conjugate did not induce loss in body weight. In conclusion, the present study reveals a novel approach to target key cell types in tumors through PDGFR-beta, which can be applied to enhance the therapeutic efficacy of anticancer drugs.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células del Estroma/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/patología , Femenino , Humanos , Ratones , Células 3T3 NIH , Neoplasias Ováricas/patología , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/fisiología , Albúmina Sérica/genética , Albúmina Sérica/metabolismo , Albúmina Sérica/farmacología , Células del Estroma/efectos de los fármacosAsunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos , Neoplasias/tratamiento farmacológico , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/administración & dosificación , Células del Estroma/efectos de los fármacos , Animales , Doxorrubicina/farmacología , Ratones , Células 3T3 NIH , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Albúmina Sérica/administración & dosificación , Albúmina Sérica/metabolismoRESUMEN
The poor water solubility of many drugs requires a specific formulation to achieve a sufficient bioavailability after oral administration. Suspensions of small drug particles can be used to improve the bioavailability. We here show that the fungal hydrophobin SC3 can be used to make suspensions of water insoluble drugs. Bioavailability of two of these drugs, nifedipine and cyclosporine A (CyA), was tested when administered as a SC3-based suspension. SC3 (in a 1:2 (w/w) drug:SC3 ratio) or 100% PEG400 increased the bioavailability of nifedipine to a similar degree (6+/-2- and 4+/-3-fold, respectively) compared to nifedipine powder without additives. Moreover, SC3 (in a 7:1 (w/w) drug:hydrophobin ratio) was as effective as a 20-fold diluted Neoral formulation by increasing bioavailability of CyA 2.3+/-0.3-fold compared to CyA in water. Interestingly, using SC3 in the CyA formulation resulted in a slower uptake (p<0.001 in T(max)) of the drug, with a lower peak concentration (C(max) 1.8 mg ml(-1)) at a later time point (T(max) 9+/-2 h) compared to Neoral (C(max) 2.2 mg ml(-1); T(max) 3.2+/-0.2). Consequently, SC3 will result in a more constant, longer lasting drug level in the body. Taken together, hydrophobins are attractive candidates to formulate hydrophobic drugs.
Asunto(s)
Composición de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Preparaciones Farmacéuticas/administración & dosificación , Agua/química , Administración Oral , Animales , Disponibilidad Biológica , Ciclosporina/sangre , Masculino , Nifedipino/administración & dosificación , Tamaño de la Partícula , Ratas , Ratas Wistar , Solubilidad , SolucionesRESUMEN
15-Deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)), a peroxisome proliferator-activated receptor gamma (PPARgamma) agonist, induces cell death in tumor cells in vitro; however, no study showed its in vivo effect on tumors. Here, we report that 15d-PGJ(2) shows antitumor effects in vivo in mice. However, its effects correlate with tumor uptake of albumin, to which it reversibly binds. 15d-PGJ(2) induces cell death in B16F10 melanoma and C26 colon carcinoma cells in vitro. These effects were not elicited through PPARgamma-dependent pathways because an irreversible PPARgamma antagonist GW9662 did not inhibit these effects. Caspase- and nuclear factor kappaB- (NF-kappaB) dependent pathways were found to be involved as determined with caspase-3/7 fluorescent assay and NF-kappaB containing plasmid transfection assay, respectively. Noticeably, 15d-PGJ(2) had significantly stronger effects in C26 cells compared with B16 cells in all assays. However, in vivo, there was no effect on C26 tumors, yet it significantly inhibited the B16 tumor growth in mice by 75%. We found that 15d-PGJ(2) rapidly bound to albumin and in vivo albumin greatly distributed to B16 tumors compared with C26 tumors, shown with gamma-camera imaging and immunohistochemical staining. Albumin accumulation can be attributed to the large blood vessel diameter in B16 tumors and an enhanced permeability and retention effect. These findings suggest that 15d-PGJ(2) can be an effective therapeutic agent for cancer, although its effects seem to be limited to the tumors allowing albumin penetration.
Asunto(s)
Neoplasias Experimentales/tratamiento farmacológico , Neovascularización Patológica/patología , Prostaglandina D2/análogos & derivados , Albúmina Sérica/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Inmunohistoquímica , Factores Inmunológicos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacología , Unión Proteica , Transducción de Señal/efectos de los fármacos , TransfecciónRESUMEN
We report the development of a novel protein-based nasal vaccine against Streptococcus pneumoniae, in which three pneumococcal proteins were displayed on the surface of a non-recombinant, killed Lactococcus lactis-derived delivery system, called Gram-positive Enhancer Matrix (GEM). The GEM particles induced the production of the proinflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) by macrophages as well as the maturation of dendritic cells. The pneumococcal proteins IgA1 protease (IgA1p), putative proteinase maturation protein A (PpmA) and streptococcal lipoprotein A (SlrA) were anchored in trans to the surface of the GEM particles after recombinant production of the antigens in L. lactis as hybrids with a lactococcal cell wall binding domain, named Protein Anchor domain (PA). Intranasal immunisation with the SlrA-IgA1p or trivalent vaccine combinations without additional adjuvants showed significant protection against fatal pneumococcal pneumonia in mice. The GEM-based trivalent vaccine is a potential pneumococcal vaccine candidate that is expected to be easy to administer, safe and affordable to produce.
Asunto(s)
Lactococcus lactis/inmunología , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Administración Intranasal , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Femenino , Inmunoglobulina G/inmunología , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Chaperonas Moleculares/inmunología , Isomerasa de Peptidilprolil/inmunología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/genética , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Streptococcus pneumoniae/genéticaRESUMEN
The present work reports the use of non-living non-recombinant bacteria as a delivery system for mucosal vaccination. Antigens are bound to the cell-wall of pretreated Lactococcus lactis, designated as Gram-positive enhancer matrix (GEM), by means of a peptidoglycan binding domain. The influence of the GEM particles on the antigen-specific serum antibody response was studied. Following nasal immunization with the GEM-based vaccines, antibody responses were induced at systemic and local levels. Furthermore, different GEM-based vaccines could be used consecutively in the same mice without adverse effects or loss of activity. Taken together, the results evidence the adjuvant properties of the GEM particles and indicate that GEM-based vaccines can be used repeatedly and are particularly suitable for nasal immunization purposes.
Asunto(s)
Antígenos Bacterianos/inmunología , Lactococcus lactis/metabolismo , Vacunas Neumococicas/administración & dosificación , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Administración Intranasal , Animales , Anticuerpos Antibacterianos/sangre , Femenino , Inmunoglobulina G/sangre , Ratones , Plásmidos , Organismos Libres de Patógenos EspecíficosRESUMEN
Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading capacity for externally added heterologous antigens that are fused to a high affinity binding domain. This binding domain, the protein anchor (PA), is derived from the Lactococcus lactis AcmA cell-wall hydrolase, and contains three repeats of a LysM-type cell-wall binding motif. Antigens are produced as antigen-PA fusions by recombinant expression systems that secrete the hybrid proteins into the culture growth medium. GEM particles are then used as affinity beads to isolate the antigen-PA fusions from the complex growth media in a one step procedure after removal of the recombinant producer cells. This procedure is also highly suitable for making multivalent vaccines. The resulting vaccines are stable at room temperature, lack recombinant DNA, and mimic pathogens by their bacterial size, surface display of antigens and adjuvant activity of the bacterial components in the GEM particles. The GEM-based vaccines do not require additional adjuvant for eliciting high levels of specific antibodies in mucosal and systemic compartments.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Inmunidad Mucosa/inmunología , Lactococcus lactis/inmunología , Vacunación/métodos , Adyuvantes Inmunológicos/química , Administración Intranasal , Animales , Formación de Anticuerpos/inmunología , Antígenos/química , Antígenos/genética , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Sitios de Unión/genética , Expresión Génica/genética , Vectores Genéticos/genética , Calor , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Lactococcus lactis/química , Lactococcus lactis/genética , Pulmón/inmunología , Ratones , Muramidasa/genética , Nariz/inmunología , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Streptococcus pneumoniae/inmunología , Transformación Genética , Ácido Tricloroacético/químicaRESUMEN
To define and monitor the structure of microbial communities found in the human vagina, a cultivation-independent approach based on analyses of terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes was developed and validated. Sixteen bacterial strains commonly found in the human vagina were used to construct model communities that were subsequently used to develop efficient means for the isolation of genomic DNA and an optimal strategy for T-RFLP analyses. The various genera in the model community could best be resolved by digesting amplicons made using bacterial primers 8f and 926r with HaeIII; fewer strains could be resolved using other primer-enzyme combinations, and no combination successfully distinguished certain species of the same genus. To demonstrate the utility of the approach, samples from five women that had been collected over a 2-month period were analyzed. Differences and similarities among the vaginal microbial communities of the women were readily apparent. The T-RFLP data suggest that the communities of three women were dominated by a single phylotype, most likely species of Lactobacillus. In contrast, the communities of two other women included numerically abundant populations that differed from Lactobacillus strains whose 16S rRNA genes had been previously determined. The T-RFLP profiles of samples from all the women were largely invariant over time, indicating that the kinds and abundances of the numerically dominant populations were relatively stable throughout two menstrual cycles. These findings show that T-RFLP of 16S rRNA genes can be used to compare vaginal microbial communities and gain information about the numerically dominant populations that are present.