Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Genet Med ; : 101166, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38767059

RESUMEN

PURPOSE: The function of FAM177A1 and its relationship to human disease is largely unknown. Recent studies have demonstrated FAM177A1 to be a critical immune-associated gene. One previous case study has linked FAM177A1 to a neurodevelopmental disorder in four siblings. METHODS: We identified five individuals from three unrelated families with biallelic variants in FAM177A1. The physiological function of FAM177A1 was studied in a zebrafish model organism and human cell lines with loss-of-function variants similar to the affected cohort. RESULTS: These individuals share a characteristic phenotype defined by macrocephaly, global developmental delay, intellectual disability, seizures, behavioral abnormalities, hypotonia, and gait disturbance. We show that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. CONCLUSION: Our data sheds light on the emerging function of FAM177A1 and defines FAM177A1-related neurodevelopmental disorder as a new clinical entity.

2.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38466753

RESUMEN

Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex-determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting that Chr4R transcriptomics might differ from the rest of the genome. To test this hypothesis, we conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes in the Nadia strain and identified 4 regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brains and livers validated reduced transcripts from Region-2 in somatic cells, but without sex specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. Region-2 lacks protein-coding genes with human orthologs; has zinc finger genes expressed early in zygotic genome activation; has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and a distinct set of repetitive elements. The colocalization of (1) genes silenced in ovaries but not in testes that are (2) expressed in embryos briefly at the onset of zygotic genome activation; (3) maternal-specific genes for translation machinery; (4) maternal-specific spliceosome components; and (5) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a maternal-to-zygotic-transition gene regulatory block.


Asunto(s)
Cromosomas Sexuales , Pez Cebra , Animales , Pez Cebra/genética , Femenino , Masculino , Cromosomas Sexuales/genética , Cigoto/metabolismo , Procesos de Determinación del Sexo/genética , Transcriptoma , Testículo/metabolismo , Perfilación de la Expresión Génica
3.
Front Cell Dev Biol ; 12: 1362228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529407

RESUMEN

The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.

4.
PLoS Comput Biol ; 20(2): e1011868, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346074

RESUMEN

In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when the effects of homozygosity for recessive mutations are studied in non-isogenic backgrounds, genes located proximal to the mutation on the same chromosome often appear over-represented among those genes identified as differentially expressed (DE). One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect functional responses to the mutation but, instead, result from an unequal distribution of expression quantitative trait loci (eQTLs) between sample groups of mutant or wild-type genotypes. This is problematic because eQTL expression differences are difficult to distinguish from genes that are DE due to functional responses to a mutation. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) are also observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between those sample groups subjected to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting-based approaches. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. Our method for DAR analysis requires only RNA-sequencing data, facilitating its application across new and existing datasets.


Asunto(s)
Sitios de Carácter Cuantitativo , Pez Cebra , Animales , Sitios de Carácter Cuantitativo/genética , Pez Cebra/genética , Perfilación de la Expresión Génica , Genotipo , ARN , Transcriptoma/genética
5.
Sci Adv ; 10(3): eadj5991, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241378

RESUMEN

Ancient bony fishes had heterocercal tails, like modern sharks and sturgeons, with asymmetric caudal fins and a vertebral column extending into an elongated upper lobe. Teleost fishes, in contrast, developed a homocercal tail characterized by two separate equal-sized fin lobes and the body axis not extending into the caudal fin. A similar heterocercal-to-homocercal transition occurs during teleost ontogeny, although the underlying genetic and developmental mechanisms for either transition remain unresolved. Here, we investigated the role of hox13 genes in caudal fin formation as these genes control posterior identity in animals. Analysis of expression profiles of zebrafish hox13 paralogs and phenotypes of CRISPR/Cas9-induced mutants showed that double hoxb13a and hoxc13a mutants fail to form a caudal fin. Furthermore, single mutants display heterocercal-like morphologies not seen since Mesozoic fossil teleosteomorphs. Relaxation of functional constraints after the teleost genome duplication may have allowed hox13 duplicates to neo- or subfunctionalize, ultimately contributing to the evolution of a homocercal tail in teleost fishes.


Asunto(s)
Evolución Biológica , Pez Cebra , Animales , Pez Cebra/genética , Genes Homeobox , Aletas de Animales , Columna Vertebral
6.
Environ Pollut ; 340(Pt 2): 122765, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37913975

RESUMEN

Persistent organic pollutants (POPs) are lipophilic compounds that bioaccumulate in animals and biomagnify within food webs. Many POPs are endocrine disrupting compounds that impact vertebrate development. POPs accumulate in the Arctic via global distillation and thereby impact high trophic level vertebrates as well as people who live a subsistence lifestyle. The Arctic also contains thousands of point sources of pollution, such as formerly used defense (FUD) sites. Sivuqaq (St. Lawrence Island), Alaska was used by the U.S. military during the Cold War and FUD sites on the island remain point sources of POP contamination. We examined the effects of POP exposure on ninespine stickleback (Pungitius pungitius) collected from Troutman Lake in the village of Gambell as a model for human exposure and disease. During the Cold War, Troutman Lake was used as a dump site by the U.S. military. We found that PCB concentrations in stickleback exceeded the U.S. Environmental Protection Agency's guideline for unlimited consumption despite these fish being low trophic level organisms. We examined effects at three levels of biological organization: gene expression, endocrinology, and histomorphology. We found that ninespine stickleback from Troutman Lake exhibited suppressed gonadal development compared to threespine stickleback (Gasterosteus aculeatus) studied elsewhere. Troutman Lake stickleback also displayed two distinct hepatic phenotypes, one with lipid accumulation and one with glycogen-type vacuolation. We compared the transcriptomic profiles of these liver phenotypes using RNA sequencing and found significant upregulation of genes involved in ribosomal and metabolic pathways in the lipid accumulation group. Additionally, stickleback displaying liver lipid accumulation had significantly fewer thyroid follicles than the vacuolated phenotype. Our study and previous work highlight health concerns for people and wildlife due to pollution hotspots in the Arctic, and the need for health-protective remediation.


Asunto(s)
Contaminantes Ambientales , Smegmamorpha , Animales , Humanos , Alaska , Contaminantes Orgánicos Persistentes/metabolismo , Lagos , Peces/genética , Smegmamorpha/metabolismo , Contaminantes Ambientales/metabolismo , Expresión Génica , Lípidos
7.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106184

RESUMEN

Wild zebrafish (Danio rerio) have a ZZ/ZW chromosomal sex determination system with the major sex locus on the right arm of chromosome-4 (Chr4R) near the largest heterochromatic block in the genome, suggesting the hypothesis that the Chr4R transcriptome might be different from the rest of the genome. We conducted an RNA-seq analysis of adult ZW ovaries and ZZ testes and identified four regions of Chr4 with different gene expression profiles. Unique in the genome, protein-coding genes in a 41.7 Mb section (Region-2) were expressed in testis but silent in ovary. The AB lab strain, which lacks sex chromosomes, verified this result, showing that testis-biased gene expression in Region-2 depends on gonad biology, not on sex-determining mechanism. RNA-seq analyses in female and male brain and liver validated few transcripts from Region-2 in somatic cells, but without sex-specificity. Region-2 corresponds to the heterochromatic portion of Chr4R and its content of genes and repetitive elements distinguishes it from the rest of the genome. In Region-2, protein-coding genes lack human orthologs; it has zinc finger genes expressed early in zygotic genome activation; it has maternal 5S rRNA genes, maternal spliceosome genes, a concentration of tRNA genes, and an distinct set of repetitive elements. The colocalization of 1) genes silenced in ovaries but not in testes that are 2) expressed in embryos briefly at the onset of zygotic genome activation; 3) maternal-specific genes for translation machinery; 4) maternal-specific spliceosome components; and 4) adjacent genes encoding miR-430, which mediates maternal transcript degradation, suggest that this is a Maternal-to-Zygotic-Transition Gene Regulatory Block.

8.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014084

RESUMEN

The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.

9.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37879119

RESUMEN

Expression of multiple hemoglobin isoforms with differing physiochemical properties likely helps species adapt to different environmental and physiological conditions. Antarctic notothenioid fishes inhabit the icy Southern Ocean and display fewer hemoglobin isoforms, each with less affinity for oxygen than temperate relatives. Reduced hemoglobin multiplicity was proposed to result from relaxed selective pressure in the cold, thermally stable, and highly oxygenated Antarctic waters. These conditions also permitted the survival and diversification of white-blooded icefishes, the only vertebrates living without hemoglobin. To understand hemoglobin evolution during adaptation to freezing water, we analyzed hemoglobin genes from 36 notothenioid genome assemblies. Results showed that adaptation to frigid conditions shaped hemoglobin gene evolution by episodic diversifying selection concomitant with cold adaptation and by pervasive evolution in Antarctic notothenioids compared to temperate relatives, likely a continuing adaptation to Antarctic conditions. Analysis of hemoglobin gene expression in adult hematopoietic organs in various temperate and Antarctic species further revealed a switch in hemoglobin gene expression underlying hemoglobin multiplicity reduction in Antarctic fish, leading to a single hemoglobin isoform in adult plunderfishes and dragonfishes, the sister groups to icefishes. The predicted high hemoglobin multiplicity in Antarctic fish embryos based on transcriptomic data, however, raises questions about the molecular bases and physiological implications of diverse hemoglobin isoforms in embryos compared to adults. This analysis supports the hypothesis that the last common icefish ancestor was vulnerable to detrimental mutations affecting the single ancestral expressed alpha- and beta-globin gene pair, potentially predisposing their subsequent loss.


Asunto(s)
Peces , Perciformes , Animales , Peces/genética , Hemoglobinas/genética , Vertebrados , Evolución Molecular , Isoformas de Proteínas , Regiones Antárticas , Perciformes/genética
10.
Nat Commun ; 14(1): 3412, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296119

RESUMEN

Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes.


Asunto(s)
Peces , Perciformes , Animales , Peces/genética , Genómica , Vertebrados , Filogenia , Hemoglobinas/genética , Regiones Antárticas
11.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945478

RESUMEN

In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when homozygous mutations are studied in non-isogenic backgrounds, genes from the same chromosome as a mutation often appear over-represented among differentially expressed (DE) genes. One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect true biological responses to the mutation but, instead, result from differences in representation of expression quantitative trait loci (eQTLs) between sample groups selected on the basis of mutant or wild-type genotype. This is problematic when inclusion of spurious DE genes in a functional enrichment study results in incorrect inferences of mutation effect. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) can also be observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between groups of samples subject to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting of gene-level rankings. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. The DAR metric provides a solid foundation for addressing the eQTL issue in new and existing datasets because it relies solely on RNA-sequencing data.

12.
Science ; 379(6632): 572-575, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36758078

RESUMEN

Accurate species phylogenies are a prerequisite for all evolutionary research. Teleosts are the largest and most diversified group of extant vertebrates, but relationships among their three oldest extant lineages remain unresolved. On the basis of seven high-quality new genome assemblies in Elopomorpha (tarpons, eels), we revisited the topology of the deepest branches of the teleost phylogeny using independent gene sequence and chromosomal rearrangement phylogenomic approaches. These analyses converged to a single scenario that unambiguously places the Elopomorpha and Osteoglossomorpha (arapaima, elephantnose fish) in a monophyletic sister group to all other teleosts, i.e., the Clupeocephala lineage (zebrafish, medaka). This finding resolves more than 50 years of controversy on the evolutionary relationships of these lineages and highlights the power of combining different levels of genome-wide information to solve complex phylogenies.


Asunto(s)
Evolución Biológica , Peces , Animales , Anguilas/clasificación , Anguilas/genética , Peces/clasificación , Peces/genética , Genoma , Filogenia , Pez Cebra/clasificación , Pez Cebra/genética
13.
bioRxiv ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38234788

RESUMEN

The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.

14.
bioRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38187698

RESUMEN

Mutations in VPS13B, a member of a protein family implicated in bulk lipid transport between adjacent membranes, cause Cohen syndrome. VPS13B is known to be concentrated in the Golgi complex, but its precise location within this organelle and thus the site(s) where it achieves lipid transport remains unclear. Here we show that VPS13B is localized at the interface between cis and trans Golgi sub-compartments and that Golgi complex re-formation after Brefeldin A (BFA) induced disruption is delayed in VPS13B KO cells. This delay is phenocopied by loss of FAM177A1, a Golgi complex protein of unknown function reported to be a VPS13B interactor and whose mutations also result in a developmental disorder. In zebrafish, the vps13b orthologue, not previously annotated in this organism, genetically interacts with fam177a1. Collectively, these findings raise the possibility that bulk lipid transport by VPS13B may play a role in expanding Golgi membranes and that VPS13B may be assisted in this function by FAM177A1.

15.
Dis Model Mech ; 15(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36125045

RESUMEN

Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.


Asunto(s)
Evolución Biológica , Animales , Humanos , Filogenia , Reproducibilidad de los Resultados
16.
Proc Biol Sci ; 289(1980): 20220667, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35946155

RESUMEN

Nitric oxide (NO) is an ancestral key signalling molecule essential for life and has enormous versatility in biological systems, including cardiovascular homeostasis, neurotransmission and immunity. Although our knowledge of NO synthases (Nos), the enzymes that synthesize NO in vivo, is substantial, the origin of a large and diversified repertoire of nos gene orthologues in fishes with respect to tetrapods remains a puzzle. The recent identification of nos3 in the ray-finned fish spotted gar, which was considered lost in this lineage, changed this perspective. This finding prompted us to explore nos gene evolution, surveying vertebrate species representing key evolutionary nodes. This study provides noteworthy findings: first, nos2 experienced several lineage-specific gene duplications and losses. Second, nos3 was found to be lost independently in two different teleost lineages, Elopomorpha and Clupeocephala. Third, the expression of at least one nos paralogue in the gills of developing shark, bichir, sturgeon, and gar, but not in lamprey, suggests that nos expression in this organ may have arisen in the last common ancestor of gnathostomes. These results provide a framework for continuing research on nos genes' roles, highlighting subfunctionalization and reciprocal loss of function that occurred in different lineages during vertebrate genome duplications.


Asunto(s)
Branquias , Vertebrados , Animales , Evolución Molecular , Peces/genética , Duplicación de Gen , Óxido Nítrico Sintasa/genética , Filogenia , Vertebrados/genética
17.
iScience ; 25(7): 104588, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35800770

RESUMEN

Climate changes can promote disease outbreaks, but their nature and potential impacts in remote areas have received little attention. In a hot spot of biodiversity on the West Antarctic Peninsula, which faces among the fastest changing climates on Earth, we captured specimens of two notothenioid fish species affected by large skin tumors at an incidence never before observed in the Southern Ocean. Molecular and histopathological analyses revealed that X-cell parasitic alveolates, members of a genus we call Notoxcellia, are the etiological agent of these tumors. Parasite-specific molecular probes showed that xenomas remained within the skin but largely outgrew host cells in the dermis. We further observed that tumors induced neovascularization in underlying tissue and detrimentally affected host growth and condition. Although many knowledge gaps persist about X-cell disease, including its mode of transmission and life cycle, these findings reveal potentially active biotic threats to vulnerable Antarctic ecosystems.

18.
Evol Appl ; 15(7): 1079-1098, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35899258

RESUMEN

The vertebrate sodium-iodide symporter (NIS or SLC5A5) transports iodide into the thyroid follicular cells that synthesize thyroid hormone. The SLC5A protein family includes transporters of vitamins, minerals, and nutrients. Disruption of SLC5A5 function by perchlorate, a pervasive environmental contaminant, leads to human pathologies, especially hypothyroidism. Perchlorate also disrupts the sexual development of model animals, including threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), but the mechanism of action is unknown. To test the hypothesis that SLC5A5 paralogs are expressed in tissues necessary for the development of reproductive organs, and therefore are plausible candidates to mediate the effects of perchlorate on sexual development, we first investigated the evolutionary history of Slc5a paralogs to better understand potential functional trajectories of the gene family. We identified two clades of slc5a paralogs with respect to an outgroup of sodium/choline cotransporters (slc5a7); these clades are the NIS clade of sodium/iodide and lactate cotransporters (slc5a5, slc5a6, slc5a8, slc5a8, and slc5a12) and the SGLT clade of sodium/glucose cotransporters (slc5a1, slc5a2, slc5a3, slc5a4, slc5a10, and slc5a11). We also characterized expression patterns of slc5a genes during development. Stickleback embryos and early larvae expressed NIS clade genes in connective tissue, cartilage, teeth, and thyroid. Stickleback males and females expressed slc5a5 and its paralogs in gonads. Single-cell transcriptomics (scRNA-seq) on zebrafish sex-genotyped gonads revealed that NIS clade-expressing cells included germ cells (slc5a5, slc5a6a, and slc5a6b) and gonadal soma cells (slc5a8l). These results are consistent with the hypothesis that perchlorate exerts its effects on sexual development by interacting with slc5a5 or its paralogs in reproductive tissues. These findings show novel expression domains of slc5 genes in stickleback and zebrafish, which suggest similar functions across vertebrates including humans, and provide candidates to mediate the effects of perchlorate on sexual development.

19.
Genes (Basel) ; 13(5)2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35627303

RESUMEN

Fish have colonized nearly all aquatic niches, making them an invaluable resource to understand vertebrate adaptation and gene family evolution, including the evolution of complex neural networks and modulatory neurotransmitter pathways. Among ancient regulatory molecules, the gaseous messenger nitric oxide (NO) is involved in a wide range of biological processes. Because of its short half-life, the modulatory capability of NO is strictly related to the local activity of nitric oxide synthases (Nos), enzymes that synthesize NO from L-arginine, making the localization of Nos mRNAs a reliable indirect proxy for the location of NO action domains, targets, and effectors. Within the diversified actinopterygian nos paralogs, nos1 (alias nnos) is ubiquitously present as a single copy gene across the gnathostome lineage, making it an ideal candidate for comparative studies. To investigate variations in the NO system across ray-finned fish phylogeny, we compared nos1 expression patterns during the development of two well-established experimental teleosts (zebrafish and medaka) with an early branching holostean (spotted gar), an important evolutionary bridge between teleosts and tetrapods. Data reported here highlight both conserved expression domains and species-specific nos1 territories, confirming the ancestry of this signaling system and expanding the number of biological processes implicated in NO activities.


Asunto(s)
Evolución Molecular , Pez Cebra , Animales , Sistema Nervioso , Óxido Nítrico , Filogenia
20.
Environ Res ; 213: 113549, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618011

RESUMEN

Sex ratio depends on sex determination mechanisms and is a key demographic parameter determining population viability and resilience to natural and anthropogenic stressors. There is increasing evidence that the environment can alter sex ratio even in genetically sex-determined species (GSD), as elevated temperature can cause female-to-male sex reversal (neomales). Alarmingly, neomales are being discovered in natural populations of several fish, amphibian and reptile species worldwide. Understanding the basis of neomale development is important for conservation biology. Among GSD species, it is unknown whether those with chromosomal sex determination (CSD), the most common system, will better resist the influence of high temperature than those with polygenic sex determination (PSD). Here, we compared the effects of elevated temperature in two wild zebrafish strains, Nadia (NA) and Ekkwill (EKW), which have CSD with a ZZ/ZW system, against the AB laboratory strain, which has PSD. First, we uncovered novel sex genotypes and the results showed that, at control temperature, the masculinization rate roughly doubled with the addition of each Z chromosome, while some ZW and WW fish of the wild strains became neomales. Surprisingly, we found that at elevated temperatures WW fish were just as likely as ZW fish to become neomales and that all strains were equally susceptible to masculinization. These results demonstrate that the Z chromosome is not essential for male development and that the dose of W buffers masculinization at the control temperature but not at elevated temperature. Furthermore, at the elevated temperature the testes of neomales, but not of normal males, contained more spermatozoa than at the control temperature. Our results show in an unprecedented way that, in a global warming scenario, CSD species may not necessarily be better protected against the masculinizing effect of elevated temperature than PSD species, and reveal genotype-by-temperature interactions in male sex determination and spermatogenesis.


Asunto(s)
Procesos de Determinación del Sexo , Pez Cebra , Animales , Cromosomas , Femenino , Masculino , Razón de Masculinidad , Temperatura , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA