Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 155(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37578743

RESUMEN

Pathogenic variants in voltage-gated sodium (NaV) channel genes including SCN2A, encoding NaV1.2, are discovered frequently in neurodevelopmental disorders with or without epilepsy. SCN2A is also a high-confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function variants cause neonatal-onset epilepsy, whereas loss-of-function variants are associated with ASD and ID. However, this framework was derived from a limited number of studies conducted under heterogeneous experimental conditions, whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of SCN2A variants using automated patch-clamp recording to demonstrate the validity of this method and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common variants using two alternatively spliced isoforms of NaV1.2 expressed in HEK293T cells. Automated patch-clamp recording provided a valid high throughput method to ascertain detailed functional properties of NaV1.2 variants with concordant findings for variants that were previously studied using manual patch clamp. Many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-functions that are difficult to classify by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of variants with greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor. This approach offers an enhanced ability to discern relationships between channel dysfunction and neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Trastornos del Neurodesarrollo , Humanos , Trastorno del Espectro Autista/genética , Epilepsia/genética , Células HEK293 , Canal de Sodio Activado por Voltaje NAV1.2/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
2.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865317

RESUMEN

Pathogenic variants in neuronal voltage-gated sodium (Na V ) channel genes including SCN2A , which encodes Na V 1.2, are frequently discovered in neurodevelopmental disorders with and without epilepsy. SCN2A is also a high confidence risk gene for autism spectrum disorder (ASD) and nonsyndromic intellectual disability (ID). Previous work to determine the functional consequences of SCN2A variants yielded a paradigm in which predominantly gain-of-function (GoF) variants cause epilepsy whereas loss-of-function (LoF) variants are associated with ASD and ID. However, this framework is based on a limited number of functional studies conducted under heterogenous experimental conditions whereas most disease-associated SCN2A variants have not been functionally annotated. We determined the functional properties of more than 30 SCN2A variants using automated patch clamp recording to assess the analytical validity of this approach and to examine whether a binary classification of variant dysfunction is evident in a larger cohort studied under uniform conditions. We studied 28 disease-associated variants and 4 common population variants using two distinct alternatively spliced forms of Na V 1.2 that were heterologously expressed in HEK293T cells. Multiple biophysical parameters were assessed on 5,858 individual cells. We found that automated patch clamp recording provided a valid high throughput method to ascertain detailed functional properties of Na V 1.2 variants with concordant findings for a subset of variants that were previously studied using manual patch clamp. Additionally, many epilepsy-associated variants in our study exhibited complex patterns of gain- and loss-of-function properties that are difficult to classify overall by a simple binary scheme. The higher throughput achievable with automated patch clamp enables study of a larger number of variants, greater standardization of recording conditions, freedom from operator bias, and enhanced experimental rigor valuable for accurate assessment of Na V channel variant dysfunction. Together, this approach will enhance our ability to discern relationships between variant channel dysfunction and neurodevelopmental disorders.

4.
Nat Genet ; 54(3): 232-239, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35210625

RESUMEN

Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.


Asunto(s)
Síndrome de Brugada , Alelos , Síndrome de Brugada/complicaciones , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Susceptibilidad a Enfermedades/complicaciones , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Adulto Joven
5.
JAMA Cardiol ; 6(11): 1247-1256, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34379075

RESUMEN

Importance: Postmortem genetic testing of young individuals with sudden death has previously identified pathogenic gene variants. However, prior studies primarily considered highly penetrant monogenic variants, often without detailed decedent and family clinical information. Objective: To assess genotype and phenotype risk in a diverse cohort of young decedents with sudden death and their families. Design, Setting, and Participants: Pathological and whole-genome sequence analysis was conducted in a cohort referred from a national network of medical examiners. Cases were accrued prospectively from May 2015 to March 2019 across 24 US states. Analysis began September 2016 and ended November 2020. Exposures: Evaluation of autopsy and clinical data integrated with whole-genome sequence data and family member evaluation. Results: A total of 103 decedents (mean [SD] age at death, 23.7 [11.9] years; age range, 1-44 years), their surviving family members, and 140 sex- and genetic ancestry-matched controls were analyzed. Among 103 decedents, autopsy and clinical data review categorized 36 decedents with postmortem diagnoses, 23 decedents with findings of uncertain significance, and 44 with sudden unexplained death. Pathogenic/likely pathogenic (P/LP) genetic variants in arrhythmia or cardiomyopathy genes were identified in 13 decedents (12.6%). A multivariable analysis including decedent phenotype, ancestry, and sex demonstrated that younger decedents had a higher burden of P/LP variants and select variants of uncertain significance (effect size, -1.64; P = .001). These select, curated variants of uncertain significance in cardiac genes were more common in decedents than controls (83 of 103 decedents [86%] vs 100 of 140 controls [71%]; P = .005), and decedents harbored more rare cardiac variants than controls (2.3 variants per individual vs 1.8 in controls; P = .006). Genetic testing of 31 parent-decedent trios and 14 parent-decedent dyads revealed 8 transmitted P/LP variants and 1 de novo P/LP variant. Incomplete penetrance was present in 6 of 8 parents who transmitted a P/LP variant. Conclusions and Relevance: Whole-genome sequencing effectively identified P/LP variants in cases of sudden death in young individuals, implicating both arrhythmia and cardiomyopathy genes. Genomic analyses and familial phenotype association suggest potentially additive, oligogenic risk mechanisms for sudden death in this cohort.


Asunto(s)
Autopsia/métodos , Muerte Súbita/patología , Genómica/métodos , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Seguimiento , Pruebas Genéticas/métodos , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Adulto Joven
7.
Mol Pharmacol ; 98(5): 540-547, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32938719

RESUMEN

GS-967 and eleclazine (GS-6615) are novel sodium channel inhibitors exhibiting antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current (I NaL). Here, we took advantage of a high throughput automated electrophysiology platform (SyncroPatch 768PE) to investigate the molecular pharmacology of GS-967 and eleclazine on peak sodium current (I NaP) recorded from human induced pluripotent stem cell-derived cardiomyocytes. We compared the effects of GS-967 and eleclazine with the antiarrhythmic drug lidocaine, the prototype I NaL inhibitor ranolazine, and the slow inactivation enhancing drug lacosamide. In human induced pluripotent stem cell-derived cardiomyocytes, GS-967 and eleclazine caused a reduction of I NaP in a frequency-dependent manner consistent with use-dependent block (UDB). GS-967 and eleclazine had similar efficacy but evoked more potent UDB of I NaP (IC50 = 0.07 and 0.6 µM, respectively) than ranolazine (7.8 µM), lidocaine (133.5 µM), and lacosamide (158.5 µM). In addition, GS-967 and eleclazine exerted more potent effects on slow inactivation and recovery from inactivation compared with the other sodium channel blocking drugs we tested. The greater UDB potency of GS-967 and eleclazine was attributed to the higher association rates and moderate unbinding rate of these two compounds with sodium channels. We propose that substantial UDB contributes to the observed antiarrhythmic efficacy of GS-967 and eleclazine. SIGNIFICANCE STATEMENT: We investigated the molecular pharmacology of GS-967 and eleclazine on sodium channels in human induced pluripotent stem cell-derived cardiomyocytes using a high throughput automated electrophysiology platform. Sodium channel inhibition by GS-967 and eleclazine has unique effects, including accelerating the onset of slow inactivation and impairing recovery from inactivation. These effects combined with rapid binding and moderate unbinding kinetics explain potent use-dependent block, which we propose contributes to their observed antiarrhythmic efficacy.


Asunto(s)
Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Oxazepinas/farmacología , Piridinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Triazoles/farmacología , Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/farmacología , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Lidocaína/farmacología , Miocitos Cardíacos/metabolismo , Ranolazina/farmacología
8.
Cell Stem Cell ; 27(5): 813-821.e6, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32931730

RESUMEN

Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Potenciales de Acción , Antiarrítmicos/farmacología , Humanos , Miocitos Cardíacos , Técnicas de Placa-Clamp
9.
IUBMB Life ; 72(4): 601-606, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32027092

RESUMEN

The sodium channel NaX (encoded by the SCN7A gene) was originally identified in the heart and skeletal muscle and is structurally similar to the other voltage-gated sodium channels but does not appear to be voltage gated. Although NaX is expressed at high levels in cardiac and skeletal muscle, little information exists on the function of NaX in these tissues. Transcriptional profiling of ion channels in the heart in a subset of patients with Brugada syndrome revealed an inverse relationship between the expression of NaX and NaV 1.5 suggesting that, in cardiac myocytes, the expression of these channels may be linked. We propose that NaX plays a role in excitation-contraction coupling based on our experimental observations. Here we show that in cardiac myocytes, NaX is expressed in a striated pattern on the sarcolemma in regions corresponding to the sarcomeric M-line. Knocking down NaX expression decreased NaV 1.5 mRNA and protein and reduced the inward sodium current (INa+ ) following cell depolarization. When the expression of NaV 1.5 was knocked down, ~85% of the INa+ was reduced consistent with the observations that NaV 1.5 is the main voltage-gated sodium channel in cardiac muscle and that NaX likely does not directly participate in mediating the INa+ following depolarization. Silencing NaV 1.5 expression led to significant upregulation of NaX mRNA. Similar to NaV 1.5, NaX protein levels were rapidly downregulated when the intracellular [Ca2+ ] was increased either by CaCl2 or caffeine. These data suggest that a relationship exists between NaX and NaV 1.5 and that NaX may play a role in excitation-contraction coupling.


Asunto(s)
Miocitos Cardíacos/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Síndrome de Brugada/genética , Calcio/metabolismo , Células Cultivadas , Perros , Técnicas de Silenciamiento del Gen , Humanos , Contracción Miocárdica/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ratas , Sarcómeros/metabolismo , Canales de Sodio Activados por Voltaje/genética
10.
Circ Genom Precis Med ; 12(9): 375-385, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31454269

RESUMEN

BACKGROUND: CaM (calmodulin) mutations are associated with congenital arrhythmia susceptibility (calmodulinopathy) and are most often de novo. In this report, we sought to broaden the genotype-phenotype spectrum of calmodulinopathies with 2 novel calmodulin mutations and to investigate mosaicism in 2 affected families. METHODS: CaM mutations were identified in 4 independent cases by DNA sequencing. Biochemical and electrophysiological studies were performed to determine functional consequences of each mutation. RESULTS: Genetic studies identified 2 novel CaM variants (CALM3-E141K in 2 cases; CALM1-E141V) and one previously reported CaM pathogenic variant (CALM3-D130G) among 4 probands with shared clinical features of prolonged QTc interval (range 505-725 ms) and documented ventricular arrhythmia. A fatal outcome occurred for 2 of the cases. The parents of all probands were asymptomatic with normal QTc duration. However, 2 of the families had multiple affected offspring or multiple occurrences of intrauterine fetal demise. The mother from the family with recurrent intrauterine fetal demise exhibited the CALM3-E141K mutant allele in 25% of next-generation sequencing reads indicating somatic mosaicism, whereas CALM3-D130G was present in 6% of captured molecules of the paternal DNA sample, also indicating mosaicism. Two novel mutations (E141K and E141V) impaired Ca2+ binding affinity to the C-domain of CaM. Human-induced pluripotent stem cell-derived cardiomyocytes overexpressing mutant or wild-type CaM showed that both mutants impaired Ca2+-dependent inactivation of L-type Ca2+ channels and prolonged action potential duration. CONCLUSIONS: We report 2 families with somatic mosaicism associated with arrhythmogenic calmodulinopathy, and demonstrate dysregulation of L-type Ca2+ channels by 2 novel CaM mutations affecting the same residue. Parental mosaicism should be suspected in families with unexplained fetal arrhythmia or fetal demise combined with a documented CaM mutation.


Asunto(s)
Arritmias Cardíacas/genética , Calmodulina/genética , Mosaicismo , Arritmias Cardíacas/congénito , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Secuencia de Bases , Calcio/metabolismo , Calmodulina/metabolismo , Preescolar , Electrofisiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Recién Nacido , Masculino , Mutación Missense , Linaje
11.
Cell Calcium ; 82: 102063, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31401388

RESUMEN

Here we report the structure of the widely utilized calmodulin (CaM)-dependent protein kinase II (CaMKII) inhibitor KN93 bound to the Ca2+-sensing protein CaM. KN93 is widely believed to inhibit CaMKII by binding to the kinase. The CaM-KN93 interaction is significant as it can interfere with the interaction between CaM and it's physiological targets, thereby raising the possibility of ascribing modified protein function to CaMKII phosphorylation while concealing a CaM-protein interaction. NMR spectroscopy, stopped-flow kinetic measurements, and x-ray crystallography were used to characterize the structure and biophysical properties of the CaM-KN93 interaction. We then investigated the functional properties of the cardiac Na+ channel (NaV1.5) and ryanodine receptor (RyR2). We find that KN93 disrupts a high affinity CaM-NaV1.5 interaction and alters channel function independent of CaMKII. Moreover, KN93 increases RyR2 Ca2+ release in cardiomyocytes independent of CaMKII. Therefore, when interpreting KN93 data, targets other than CaMKII need to be considered.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Bencilaminas/farmacología , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Calmodulina/química , Calmodulina/genética , Células Cultivadas , Cristalografía por Rayos X , Humanos , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5/química , Fosforilación , Unión Proteica , Conformación Proteica , Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Sulfonamidas/farmacología
12.
Circ Genom Precis Med ; 11(11): e002345, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30571187

RESUMEN

BACKGROUND: The explosive growth in known human gene variation presents enormous challenges to current approaches for variant classification that have implications for diagnosis and treatment of many genetic diseases. For disorders caused by mutations in cardiac ion channels as in congenital arrhythmia syndromes, in vitro electrophysiological evidence has high value in discriminating pathogenic from benign variants, but these data are often lacking because assays are cost, time, and labor intensive. METHODS: We implemented a strategy for performing high-throughput functional evaluations of ion channel variants that repurposed an automated electrophysiological recording platform developed previously for drug discovery. RESULTS: We demonstrated the success of this approach by evaluating 78 variants in KCNQ1, a major gene involved in genetic disorders of cardiac arrhythmia susceptibility. We benchmarked our results with traditional electrophysiological approaches and observed a high level of concordance. This strategy also enabled studies of dominant-negative behavior of variants exhibiting severe loss-of-function. Overall, our results provided functional data useful for reclassifying >65% of the studied KCNQ1 variants. CONCLUSIONS: Our results illustrate an efficient and high-throughput paradigm linking genotype to function for a human cardiac ion channel that will enable data-driven classification of large numbers of variants and create new opportunities for precision medicine.


Asunto(s)
Arritmias Cardíacas , Predisposición Genética a la Enfermedad , Genotipo , Canal de Potasio KCNQ1 , Mutación , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo
13.
Structure ; 26(5): 683-694.e3, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606593

RESUMEN

The function of the human cardiac sodium channel (NaV1.5) is modulated by the Ca2+ sensor calmodulin (CaM), but the underlying mechanism(s) are controversial and poorly defined. CaM has been reported to bind in a Ca2+-dependent manner to two sites in the intracellular loop that is critical for inactivation of NaV1.5 (inactivation gate [IG]). The affinity of CaM for the complete IG was significantly stronger than that of fragments that lacked both complete binding sites. Structural analysis by nuclear magnetic resonance, crystallographic, and scattering approaches revealed that CaM simultaneously engages both IG sites using an extended configuration. Patch-clamp recordings for wild-type and mutant channels with an impaired CaM-IG interaction revealed CaM binding to the IG promotes recovery from inactivation while impeding the kinetics of inactivation. Models of full-length NaV1.5 suggest that CaM binding to the IG directly modulates channel function by destabilizing the inactivated state, which would promote resetting of the IG after channels close.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sitios de Unión , Calmodulina/química , Cristalografía por Rayos X , Regulación de la Expresión Génica , Humanos , Cinética , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Unión Proteica
14.
Mol Pharmacol ; 90(1): 52-60, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27136942

RESUMEN

GS-458967, 6-(4-(Trifluoromethoxy)phenyl)-3-(trifluoromethyl)-[1,2,4]triazolo[4,3-a]pyridine (GS967) is a recently described, novel, sodium channel inhibitor exhibiting potent antiarrhythmic effects in various in vitro and in vivo models. The antiarrhythmic mechanism has been attributed to preferential suppression of late sodium current. However, there has been no reported systematic investigation of the effects of this compound on isolated sodium channels. Here, we examined the effects of GS967 on peak (INaP) and late (INaL) sodium current recorded from cells that heterologously expressed human cardiac voltage-gated sodium channel, the principle cardiac sodium channel. As previously described, we observed that GS967 exerted tonic block of INaL (63%) to a significantly greater extent than INaP (19%). However, GS967 also caused a reduction of INaP in a frequency-dependent manner, consistent with use-dependent block (UDB). GS967 evoked more potent UDB of INaP (IC50 = 0.07 µM) than ranolazine (16 µM) and lidocaine (17 µM). Use-dependent block was best explained by a significant slowing of recovery from fast and slow inactivation with a significant enhancement of slow inactivation in the presence of GS967. Furthermore, GS967 was found to exert these same effects on a prototypical long QT syndrome mutation (delKPQ). An engineered mutation at an interaction site for local anesthetic agents (F1760A) partially attenuated the effect of GS967 on UDB, but had no effect on tonic INaL block. We conclude that GS967 is a preferential inhibitor of INaL, but it also exerts previously unreported strong effects on slow inactivation and recovery from inactivation, resulting in substantial UDB that is not entirely dependent on a known interaction site for local anesthetic agents.


Asunto(s)
Miocardio/metabolismo , Piridinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Triazoles/farmacología , Anestésicos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Lidocaína/farmacología , Ranolazina/farmacología
15.
Circ Arrhythm Electrophysiol ; 8(4): 933-41, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26022185

RESUMEN

BACKGROUND: Mutations of the cardiac voltage-gated sodium channel (SCN5A gene encoding voltage-gated sodium channel [NaV1.5]) cause congenital long-QT syndrome type 3 (LQT3). Most NaV1.5 mutations associated with LQT3 promote a mode of sodium channel gating in which some channels fail to inactivate, contributing to increased late sodium current (INaL), which is directly responsible for delayed repolarization and prolongation of the QT interval. LQT3 patients have highest risk of arrhythmia during sleep or during periods of slow heart rate. During exercise (high heart rate), there is elevated steady-state intracellular free calcium (Ca(2+)) concentration. We hypothesized that higher levels of intracellular Ca(2+) may lower arrhythmia risk in LQT3 subjects through effects on INaL. METHODS AND RESULTS: We tested this idea by examining the effects of varying intracellular Ca(2+) concentrations on the level of INaL in cells expressing a typical LQT3 mutation, delKPQ, and another SCN5A mutation, R225P. We found that elevated intracellular Ca(2+) concentration significantly reduced INaL conducted by mutant channels but not wild-type channels. This attenuation of INaL in delKPQ expressing cells by Ca(2+) was not affected by the CaM kinase II inhibitor KN-93 but was partially attenuated by truncating the C-terminus of the channel. CONCLUSIONS: We conclude that intracellular Ca(2+) contributes to the regulation of INaL conducted by NaV1.5 mutants and propose that, during excitation-contraction coupling, elevated intracellular Ca(2+) suppresses mutant channel INaL and protects cells from delayed repolarization. These findings offer a plausible explanation for the lower arrhythmia risk in LQT3 subjects during fast heart rates.


Asunto(s)
Arritmias Cardíacas/genética , Calcio/metabolismo , ADN/genética , Mutación , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Animales , Arritmias Cardíacas/metabolismo , Células Cultivadas , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Humanos , Activación del Canal Iónico , Ratones , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp
16.
Heart Rhythm ; 11(8): 1446-53, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24815523

RESUMEN

BACKGROUND: Mutations in SCN5A, which encodes the cardiac sodium channel NaV1.5, typically cause ventricular arrhythmia or conduction slowing. Recently, SCN5A mutations have been associated with heart failure combined with variable atrial and ventricular arrhythmia. OBJECTIVE: The purpose of this study was to determine the clinical, genetic, and functional features of an amiodarone-responsive multifocal ventricular ectopy-related cardiomyopathy associated with a novel mutation in a NaV1.5 voltage sensor domain. METHODS: A novel, de novo SCN5A mutation (NaV1.5-R225P) was identified in a boy with prenatal arrhythmia and impaired cardiac contractility followed by postnatal multifocal ventricular ectopy suppressible by amiodarone. We investigated the functional consequences of NaV1.5-R225P expressed heterologously in tsA201 cells. RESULTS: Mutant channels exhibited significant abnormalities in both activation and inactivation leading to large, hyperpolarized window and ramp currents that predict aberrant sodium influx at potentials near the cardiomyocyte resting membrane potential. Mutant channels also exhibited significantly increased persistent (late) sodium current. This profile of channel dysfunction shares features with other SCN5A voltage sensor mutations associated with cardiomyopathy and overlapped that of congenital long QT syndrome. Amiodarone stabilized fast inactivation, suppressed persistent sodium current, and caused frequency-dependent inhibition of channel availability. CONCLUSION: We determined the functional consequences and pharmacologic responses of a novel SCN5A mutation associated with an arrhythmia-associated cardiomyopathy. Comparisons with other cardiomyopathy-associated NaV1.5 voltage sensor mutations revealed a pattern of abnormal voltage dependence of activation as a shared biophysical mechanism of the syndrome.


Asunto(s)
Amiodarona/uso terapéutico , Cardiomiopatías/etiología , ADN/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Complejos Prematuros Ventriculares/genética , Antiarrítmicos/uso terapéutico , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Análisis Mutacional de ADN , Electrocardiografía , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Técnicas de Placa-Clamp , Linaje , Complejos Prematuros Ventriculares/complicaciones , Complejos Prematuros Ventriculares/tratamiento farmacológico
17.
Stem Cells ; 32(7): 1774-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24648383

RESUMEN

The bone morphogenetic protein antagonist Gremlin 2 (Grem2) is required for atrial differentiation and establishment of cardiac rhythm during embryonic development. A human Grem2 variant has been associated with familial atrial fibrillation, suggesting that abnormal Grem2 activity causes arrhythmias. However, it is not known how Grem2 integrates into signaling pathways to direct atrial cardiomyocyte differentiation. Here, we demonstrate that Grem2 expression is induced concurrently with the emergence of cardiovascular progenitor cells during differentiation of mouse embryonic stem cells (ESCs). Grem2 exposure enhances the cardiogenic potential of ESCs by 20-120-fold, preferentially inducing genes expressed in atrial myocytes such as Myl7, Nppa, and Sarcolipin. We show that Grem2 acts upstream to upregulate proatrial transcription factors CoupTFII and Hey1 and downregulate atrial fate repressors Irx4 and Hey2. The molecular phenotype of Grem2-induced atrial cardiomyocytes was further supported by induction of ion channels encoded by Kcnj3, Kcnj5, and Cacna1d genes and establishment of atrial-like action potentials shown by electrophysiological recordings. We show that promotion of atrial-like cardiomyocytes is specific to the Gremlin subfamily of BMP antagonists. Grem2 proatrial differentiation activity is conveyed by noncanonical BMP signaling through phosphorylation of JNK and can be reversed by specific JNK inhibitors, but not by dorsomorphin, an inhibitor of canonical BMP signaling. Taken together, our data provide novel mechanistic insights into atrial cardiomyocyte differentiation from pluripotent stem cells and will assist the development of future approaches to study and treat arrhythmias.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas/fisiología , Animales , Células Cultivadas , Citocinas , Atrios Cardíacos/citología , Ratones , Miocitos Cardíacos/fisiología
18.
J Biol Chem ; 287(47): 39613-25, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23033485

RESUMEN

The human Ether-à-go-go-related gene (hERG)-encoded K(+) current, I(Kr) is essential for cardiac repolarization but is also a source of cardiotoxicity because unintended hERG inhibition by diverse pharmaceuticals can cause arrhythmias and sudden cardiac death. We hypothesized that a small molecule that diminishes I(Kr) block by a known hERG antagonist would constitute a first step toward preventing hERG-related arrhythmias and facilitating drug discovery. Using a high-throughput assay, we screened a library of compounds for agents that increase the IC(70) of dofetilide, a well characterized hERG blocker. One compound, VU0405601, with the desired activity was further characterized. In isolated, Langendorff-perfused rabbit hearts, optical mapping revealed that dofetilide-induced arrhythmias were reduced after pretreatment with VU0405601. Patch clamp analysis in stable hERG-HEK cells showed effects on current amplitude, inactivation, and deactivation. VU0405601 increased the IC(50) of dofetilide from 38.7 to 76.3 nM. VU0405601 mitigates the effects of hERG blockers from the extracellular aspect primarily by reducing inactivation, whereas most clinically relevant hERG inhibitors act at an inner pore site. Structure-activity relationships surrounding VU0405601 identified a 3-pyridiyl and a naphthyridine ring system as key structural components important for preventing hERG inhibition by multiple inhibitors. These findings indicate that small molecules can be designed to reduce the sensitivity of hERG to inhibitors.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/tratamiento farmacológico , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/metabolismo , Naftiridinas/química , Naftiridinas/farmacología , Fenetilaminas/efectos adversos , Bloqueadores de los Canales de Potasio/efectos adversos , Piridinas/química , Piridinas/farmacología , Sulfonamidas/efectos adversos , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Proteínas Musculares/genética , Miocardio/metabolismo , Miocardio/patología , Fenetilaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Conejos , Relación Estructura-Actividad , Sulfonamidas/farmacología
19.
J Physiol ; 587(Pt 11): 2555-66, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19406877

RESUMEN

Human ether-a-go-go-related gene (HERG) encodes the rapid, outwardly rectifying K(+) current I(Kr) that is critical for repolarization of the cardiac action potential. Congenital HERG mutations or unintended pharmaceutical block of I(Kr) can lead to life-threatening arrhythmias. Here, we assess the functional role of the alanine at position 653 (HERG-A653) that is highly conserved among evolutionarily divergent K(+) channels. HERG-A653 is close to the 'glycine hinge' implicated in K(+) channel opening, and is flanked by tyrosine 652 and phenylalanine 656, which contribute to the drug binding site. We substituted an array of seven (I, C, S, G, Y, V and T) amino acids at position 653 and expressed individual variants in heterologous systems to assess changes in gating and drug binding. Substitution of A653 resulted in negative shifts of the V(1/2) of activation ranging from -23.6 (A653S) to -62.5 (A653V) compared to -11.2 mV for wild-type (WT). Deactivation was also drastically altered: channels with A653I/C substitutions exhibited delayed deactivation in response to test potentials above the activation threshold, while A653S/G/Y/V/T failed to deactivate under those conditions and required hyperpolarization and prolonged holding potentials at -130 mV. While A653S/G/T/Y variants showed decreased sensitivity to the I(Kr) inhibitor dofetilide, these changes could not be correlated with defects in channel closure. Homology modelling suggests that in the closed state, A653 forms tight contacts with several residues from the neighbouring subunit in the tetramer, playing a key role in S6 helix packing at the narrowest part of the vestibule. Our study suggests that A653 plays an important functional role in the outwardly rectifying gating behaviour of HERG, supporting channel closure at membrane potentials negative to the channel activation threshold.


Asunto(s)
Secuencia Conservada , Canales de Potasio Éter-A-Go-Go/metabolismo , Evolución Molecular , Activación del Canal Iónico , Alanina , Secuencia de Aminoácidos , Animales , Células CHO , Simulación por Computador , Cricetinae , Cricetulus , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Cinética , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Oocitos , Fenetilaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Conformación Proteica , Relación Estructura-Actividad , Sulfonamidas/farmacología , Transfección , Xenopus laevis
20.
J Biol Chem ; 284(13): 8846-54, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19171938

RESUMEN

Sodium channels are fundamental signaling molecules in excitable cells, and are molecular targets for local anesthetic agents and intracellular free Ca(2+) ([Ca(2+)](i)). Two regions of Na(V)1.5 have been identified previously as [Ca(2+)](i)-sensitive modulators of channel inactivation. These include a C-terminal IQ motif that binds calmodulin (CaM) in different modes depending on Ca(2+) levels, and an immediately adjacent C-terminal EF-hand domain that directly binds Ca(2+). Here we show that a mutation of the IQ domain (A1924T; Brugada Syndrome) that reduces CaM binding stabilizes Na(V)1.5 inactivation, similarly and more extensively than even reducing [Ca(2+)](i). Because the DIII-DIV linker is an essential structure in Na(V)1.5 inactivation, we evaluated this domain for a potential CaM binding interaction. We identified a novel CaM binding site within the linker, validated its interaction with CaM by NMR spectroscopy, and revealed its micromolar affinity by isothermal titration calorimetry. Mutation of three consecutive hydrophobic residues (Phe(1520)-Ile(1521)-Phe(1522)) to alanines in this CaM-binding domain recapitulated the electrophysiology phenotype observed with mutation of the C-terminal IQ domain: Na(V)1.5 inactivation was stabilized; moreover, mutations of either CaM-binding domain abolish the well described stabilization of inactivation by lidocaine. The direct physical interaction of CaM with the C-terminal IQ domain and the DIII-DIV linker, combined with the similarity in phenotypes when CaM-binding sites in either domain are mutated, suggests these cytoplasmic structures could be functionally coupled through the action of CaM. These findings have bearing upon Na(+) channel function in genetically altered channels and under pathophysiologic conditions where [Ca(2+)](i) impacts cardiac conduction.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Proteínas Musculares/metabolismo , Canales de Sodio/metabolismo , Secuencias de Aminoácidos/genética , Sustitución de Aminoácidos , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Calcio/química , Calmodulina/química , Calmodulina/genética , Línea Celular , Citoplasma/química , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Proteínas Musculares/química , Proteínas Musculares/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5 , Resonancia Magnética Nuclear Biomolecular , Estabilidad Proteica , Estructura Cuaternaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Canales de Sodio/química , Canales de Sodio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA