Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 48(3): 489-497, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36100654

RESUMEN

Clinical investigations suggest involvement of the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of fear learning that underlies trauma-related disorders. Here, we utilized a 4-day fear learning paradigm combined with positron emission tomography (PET) to examine the relationship between mGluR5 availability and differences in the response of rats to repeated footshock exposure (FE). Specifically, on day 1, male (n = 16) and female (n = 12) rats received 15 footshocks and were compared with control rats who did not receive footshocks (n = 7 male; n = 4 female). FE rats were classified as low responders (LR) or high responders (HR) based on freezing to the context the following day (day 2). PET with [18F]FPEB was used to calculate regional mGluR5 binding potential (BPND) at two timepoints: prior to FE (i.e., baseline), and post-behavioral testing. Additionally, we used an unbiased proteomics approach to assess group and sex differences in prefrontal cortex (PFC) protein expression. Post-behavioral testing we observed decreased BPND in LR females, but increased BPND in HR males relative to baseline. Further, individuals displaying the greatest freezing during the FE context memory test had the largest increases in PFC BPND. Males and females displayed unique post-test molecular profiles: in males, the greatest differences were between FE and CON, including upregulation of mGluR5 and related molecular networks in FE, whereas the greatest differences among females were between the LR and HR groups. These findings suggest greater mGluR5 availability increases following footshock exposure may be related to greater contextual fear memory. Results additionally reveal sex differences in the molecular response to footshock, including differential involvement of mGluR5-related molecular networks.


Asunto(s)
Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Ratas , Tomografía de Emisión de Positrones/métodos , Receptor del Glutamato Metabotropico 5/metabolismo , Factores Sexuales
2.
Mol Psychiatry ; 27(5): 2580-2589, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35418600

RESUMEN

N-methyl-D-aspartate receptor (NMDAR) modulators have recently received increased attention as potential therapeutics for posttraumatic stress disorder (PTSD). Here, we tested a novel NMDAR-positive modulator, NYX-783, in the following two rodent models of PTSD: an auditory fear-conditioning model and a single-prolonged stress (SPS) model. We examined the ability of NYX-783 to reduce subsequent fear-based behaviors by measuring enhanced fear extinction and reduced spontaneous recovery (spontaneous return of fear) in male mice. NYX-783 administration significantly reduced spontaneous recovery in both PTSD models and enhanced fear extinction in the SPS model. Furthermore, NYX-783 increased the NMDA-induced inward currents of excitatory and inhibitory neurons in the infralimbic medial prefrontal cortex (IL mPFC) and that the GluN2B subunit of NMDARs on pyramidal neurons in the IL mPFC is required for its effect on spontaneous recovery. The downstream expression of brain-derived neurotrophic factor was required for NYX-783 to achieve its behavioral effect. These results elucidate the cellular targets of NYX-783 and the molecular mechanisms underlying the inhibition of spontaneous recovery. These preclinical findings support the hypothesis that NYX-783 may have therapeutic potential for PTSD treatment and may be particularly useful for inhibiting spontaneous recovery.


Asunto(s)
Miedo , Receptores de N-Metil-D-Aspartato , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Masculino , Ratones , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Biol Psychiatry ; 90(2): 102-108, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33637305

RESUMEN

Exposure to stress during the course of a lifetime is inevitable in the animal kingdom. It is the response to stress, the valence of the exposure, and the developmental time point that largely determine the consequences to the initial and subsequent exposures. The versatility of transcriptomic methods to yield rich, high-resolution, information-laden datasets from entire brain regions to single cells makes it a powerful approach to investigate the effects of stress from several angles. Dysregulation of the transcriptome is now a phenotypic signature of many neuropsychiatric disorders. New insight has been gained from examining stress-induced changes in gene expression at a global scale. Human postmortem datasets from depression and posttraumatic stress disorder studies have identified major gene expression changes in the diseased brain, including sex-specific changes and marked differences in male and female molecular profiles for the same disorder. Extensions of this work into animal models have explored the impact of transcriptomic dysregulation on early-life stress, chronic stress, and transgenerational impact of stress. Here, we explore the findings of human postmortem genomic studies of neuropsychiatric disorders and comparable animal models through the lens of transcriptomic dysregulation and how these findings have contributed to our understanding of stress.


Asunto(s)
Trastornos por Estrés Postraumático , Transcriptoma , Animales , Encéfalo , Femenino , Humanos , Masculino , Estrés Psicológico/genética
5.
Mol Psychiatry ; 26(9): 5097-5111, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32488125

RESUMEN

Both the NMDA receptor (NMDAR) positive allosteric modulator (PAM), and antagonist, can exert rapid antidepressant effects as shown in several animal and human studies. However, how this bidirectional modulation of NMDARs causes similar antidepressant effects remains unknown. Notably, the initial cellular trigger, specific cell-type(s), and subunit(s) of NMDARs mediating the antidepressant-like effects of a PAM or an antagonist have not been identified. Here, we used electrophysiology, microdialysis, and NMR spectroscopy to evaluate the effect of a NMDAR PAM (rapastinel) or NMDAR antagonist, ketamine on NMDAR function and disinhibition-mediated glutamate release. Further, we used cell-type specific knockdown (KD), pharmacological, and behavioral approaches to dissect the cell-type specific role of GluN2B, GluN2A, and dopamine receptor subunits in the actions of NMDAR PAM vs. antagonists. We demonstrate that rapastinel directly enhances NMDAR activity on principal glutamatergic neurons in medial prefrontal cortex (mPFC) without any effect on glutamate efflux, while ketamine blocks NMDAR on GABA interneurons to cause glutamate efflux and indirect activation of excitatory synapses. Behavioral studies using cell-type-specific KD in mPFC demonstrate that NMDAR-GluN2B KD on Camk2a- but not Gad1-expressing neurons blocks the antidepressant effects of rapastinel. In contrast, GluN2B KD on Gad1- but not Camk2a-expressing neurons blocks the actions of ketamine. The results also demonstrate that Drd1-expressing pyramidal neurons in mPFC mediate the rapid antidepressant actions of ketamine and rapastinel. Together, these results demonstrate unique initial cellular triggers as well as converging effects on Drd1-pyramidal cell signaling that underlie the antidepressant actions of NMDAR-positive modulation vs. NMDAR blockade.


Asunto(s)
Ketamina , Receptores de N-Metil-D-Aspartato , Animales , Antidepresivos/farmacología , Humanos , Interneuronas/metabolismo , Ketamina/farmacología , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Mol Psychiatry ; 26(6): 1945-1966, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32161363

RESUMEN

The SHANK3 gene encodes a postsynaptic scaffold protein in excitatory synapses, and its disruption is implicated in neurodevelopmental disorders such as Phelan-McDermid syndrome, autism spectrum disorder, and schizophrenia. Most studies of SHANK3 in the neocortex and hippocampus have focused on disturbances in pyramidal neurons. However, GABAergic interneurons likewise receive excitatory inputs and presumably would also be a target of constitutive SHANK3 perturbations. In this study, we characterize the prefrontal cortical microcircuit in awake mice using subcellular-resolution two-photon microscopy. We focused on a nonsense R1117X mutation, which leads to truncated SHANK3 and has been linked previously to cortical dysfunction. We find that R1117X mutants have abnormally elevated calcium transients in apical dendritic spines. The synaptic calcium dysregulation is due to a loss of dendritic inhibition via decreased NMDAR currents and reduced firing of dendrite-targeting somatostatin-expressing (SST) GABAergic interneurons. Notably, upregulation of the NMDAR subunit GluN2B in SST interneurons corrects the excessive synaptic calcium signals and ameliorates learning deficits in R1117X mutants. These findings reveal dendrite-targeting interneurons, and more broadly the inhibitory control of dendritic spines, as a key microcircuit mechanism compromised by the SHANK3 dysfunction.


Asunto(s)
Trastorno del Espectro Autista , Espinas Dendríticas , Animales , Calcio , Codón sin Sentido , Ratones , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Sinapsis
7.
Neuropsychopharmacology ; 46(4): 799-808, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33059355

RESUMEN

Dysregulation of the glutamatergic system and its receptors in medial prefrontal cortex (mPFC) has been implicated in major depressive disorder. Recent preclinical studies have shown that enhancing NMDA receptor (NMDAR) activity can exert rapid antidepressant-like effects. AGN-241751, an NMDAR positive allosteric modulator (PAM), is currently being tested as an antidepressant in clinical trials, but the mechanism and NMDAR subunit(s) mediating its antidepressant-like effects are unknown. We therefore used molecular, biochemical, and electrophysiological approaches to examine the cell-type-specific role of GluN2B-containing NMDAR in mediating antidepressant-like behavioral effects of AGN-241751. We demonstrate that AGN-241751 exerts antidepressant-like effects and reverses behavioral deficits induced by chronic unpredictable stress in mice. AGN-241751 treatment enhances NMDAR activity of excitatory and parvalbumin-inhibitory neurons in mPFC, activates Akt/mTOR signaling, and increases levels of synaptic proteins crucial for synaptic plasticity in the prefrontal cortex. Furthermore, cell-type-specific knockdown of GluN2B-containing NMDARs in mPFC demonstrates that GluN2B subunits on excitatory, but not inhibitory, neurons are necessary for antidepressant-like effects of AGN-241751. Together, these results demonstrate antidepressant-like actions of the NMDAR PAM AGN-241751 and identify GluN2B on excitatory neurons of mPFC as initial cellular trigger underlying these behavioral effects.


Asunto(s)
Trastorno Depresivo Mayor , Receptores de N-Metil-D-Aspartato , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Ratones , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Neuropharmacology ; 166: 107947, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926944

RESUMEN

Ketamine, an NMDA receptor antagonist and fast acting antidepressant, produces a rapid burst of glutamate in the ventral medial prefrontal cortex (mPFC). Preclinical studies have demonstrated that pyramidal cell activity in the vmPFC is necessary for the rapid antidepressant response to ketamine in rodents. We sought to characterize the effects of ketamine and its stereoisomers (R and S), as well as a metabolite, (2R,6R)-hydroxynorketamine (HNK), on vmPFC activity using a genetically encoded calcium indicator (GCaMP6f). Ratiometric fiber photometry was utilized to monitor GCaMP6f fluorescence in pyramidal cells of mouse vmPFC prior to and immediately following administration of compounds. GCaMP6f signal was assessed to determine correspondance of activity between compounds. We observed dose dependent effects with (R,S)-ketamine (3-100 mg/kg), with the greatest effects on GCaMP6f activity at 30 mg/kg and lasting up to 20 min. (S)-ketamine (15 mg/kg), which has high affinity for the NMDA receptor channel produced similar effects to (R,S)-ketamine, but compounds with low NMDA receptor affinity, including (R)-ketamine (15 mg/kg) and (2R,6R)-HNK (30 mg/kg) had little or no effect on GCaMP6f activity. The initial response to administration of (R,S)-ketamine as well as (S)-ketamine is characterized by a brief period of robust GCaMP6f activation, consistent with increased activity of vmPFC pyramidal neurons. Because (2R,6R)-HNK and (R)-ketamine are reported to have antidepressant activity in rodent models the current results indicate that different initiating mechanisms lead to similar brain adaptive consequences that underlie the rapid antidepressant responses.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/análogos & derivados , Ketamina/farmacología , Corteza Prefrontal/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/química , Antagonistas de Aminoácidos Excitadores/metabolismo , Ketamina/química , Ketamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fotometría/métodos , Corteza Prefrontal/efectos de los fármacos , Estereoisomerismo
9.
Nat Commun ; 11(1): 72, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911591

RESUMEN

A subanesthetic dose of ketamine causes acute psychotomimetic symptoms and sustained antidepressant effects. In prefrontal cortex, the prevailing disinhibition hypothesis posits that N-methyl-d-aspartate receptor (NMDAR) antagonists such as ketamine act preferentially on GABAergic neurons. However, cortical interneurons are heterogeneous. In particular, somatostatin-expressing (SST) interneurons selectively inhibit dendrites and regulate synaptic inputs, yet their response to systemic NMDAR antagonism is unknown. Here, we report that ketamine acutely suppresses the activity of SST interneurons in the medial prefrontal cortex of the awake mouse. The deficient dendritic inhibition leads to greater synaptically evoked calcium transients in the apical dendritic spines of pyramidal neurons. By manipulating NMDAR signaling via GluN2B knockdown, we show that ketamine's actions on the dendritic inhibitory mechanism has ramifications for frontal cortex-dependent behaviors and cortico-cortical connectivity. Collectively, these results demonstrate dendritic disinhibition and elevated calcium levels in dendritic spines as important local-circuit alterations driven by the administration of subanesthetic ketamine.


Asunto(s)
Calcio/metabolismo , Espinas Dendríticas/efectos de los fármacos , Ketamina/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Animales , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Integr Clin Med ; 4(2)2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34381955

RESUMEN

Dysregulation of the glutamatergic system underlies the pathophysiology of depression. Both negative and positive modulation of NMDARs exert rapid and sustained antidepressant effects by reversing the dysregulated glutamatergic system. Research in the past decades has identified key signaling pathways activated by these rapid acting antidepressants. Here, we review the converging signaling mechanisms shared by rapid acting antidepressants and discuss the recent progress on distinct actions of NMDAR antagonists and NMDAR positive modulators to trigger rapid antidepressant actions.

11.
J Clin Invest ; 130(3): 1336-1349, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31743111

RESUMEN

A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.


Asunto(s)
Antidepresivos/farmacología , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Ketamina/farmacología , Caracteres Sexuales , Animales , Femenino , Neuronas GABAérgicas/patología , Técnicas de Inactivación de Genes , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Interneuronas/patología , Masculino , Ratones , Ratones Transgénicos , Parvalbúminas/genética , Parvalbúminas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
12.
J Clin Invest ; 129(6): 2542-2554, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30990795

RESUMEN

Preclinical studies demonstrate that rapid acting antidepressants, including ketamine require stimulation of mTORC1 signaling. This pathway is regulated by neuronal activity, endocrine and metabolic signals, notably the amino acid leucine, which activates mTORC1 signaling via binding to the upstream regulator sestrin. Here, we examined the antidepressant actions of NV-5138, a novel highly selective small molecule modulator of sestrin that penetrates the blood brain barrier. The results demonstrate that a single dose of NV-5138 produced rapid and long-lasting antidepressant effects, and rapidly reversed anhedonia caused by chronic stress exposure. The antidepressant actions of NV-5138 required BDNF release as the behavioral responses are blocked by infusion of a BDNF neutralizing antibody into the medial prefrontal cortex (mPFC) or in mice with a knock-in of a BDNF polymorphism that blocks activity dependent BDNF release. NV-5138 administration also rapidly increased synapse number and function in the mPFC, and reversed the synaptic deficits caused by chronic stress. Together, the results demonstrate that NV-5138 produced rapid synaptic and antidepressant behavioral responses via activation of the mTORC1 pathway and BDNF signaling, indicating that pharmacological modulation of sestrin is a novel approach for development of rapid acting antidepressants.


Asunto(s)
Antidepresivos , Conducta Animal/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Antidepresivos/química , Antidepresivos/farmacocinética , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/genética
13.
Nat Commun ; 10(1): 223, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644390

RESUMEN

Impaired function in the medial prefrontal cortex (mPFC) contributes to depression, and the therapeutic response produced by novel rapid-acting antidepressants such as ketamine are mediated by mPFC activity. The mPFC contains multiple types of pyramidal cells, but it is unclear whether a particular subtype mediates the rapid antidepressant actions of ketamine. Here we tested two major subtypes, Drd1 and Drd2 dopamine receptor expressing pyramidal neurons and found that activating Drd1 expressing pyramidal cells in the mPFC produces rapid and long-lasting antidepressant and anxiolytic responses. In contrast, photostimulation of Drd2 expressing pyramidal cells was ineffective across anxiety-like and depression-like measures. Disruption of Drd1 activity also blocked the rapid antidepressant effects of ketamine. Finally, we demonstrate that stimulation of mPFC Drd1 terminals in the BLA recapitulates the antidepressant effects of somatic stimulation. These findings aid in understanding the cellular target neurons in the mPFC and the downstream circuitry involved in rapid antidepressant responses.


Asunto(s)
Antidepresivos/farmacología , Ketamina/farmacología , Optogenética , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Animales , Complejo Nuclear Basolateral/efectos de la radiación , Agonistas de Dopamina , Femenino , Masculino , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Receptores de Dopamina D2/metabolismo
15.
PLoS Genet ; 13(3): e1006684, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28346493

RESUMEN

Noonan syndrome (NS) is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced signaling and regulation of gene expression in Ptpn11D61Y mice and suggests that these deficits contribute to the pathophysiology of cognitive impairments in NS.


Asunto(s)
Modelos Animales de Enfermedad , Expresión Génica , Mutación , Neuronas/metabolismo , Síndrome de Noonan/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal/genética , Animales , Western Blotting , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Humanos , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Noonan/metabolismo , Síndrome de Noonan/fisiopatología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas ras/genética , Proteínas ras/metabolismo
16.
Front Cell Neurosci ; 7: 244, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24348337

RESUMEN

Homeostatic plasticity is a process by which neurons adapt to the overall network activity to keep their firing rates in a reasonable range. At the cellular level this kind of plasticity comprises modulation of cellular excitability and tuning of synaptic strength. In this review we concentrate on presynaptic homeostatic plasticity controlling the efficacy of neurotransmitter release from presynaptic boutons. While morphological and electrophysiological approaches were successful to describe homeostatic plasticity-induced changes in the presynaptic architecture and function, cellular and molecular mechanisms underlying those modifications remained largely unknown for a long time. We summarize the latest progress made in the understanding of homeostasis-induced regulation of different steps of the synaptic vesicle cycle and the molecular machineries involved in this process. We particularly focus on the role of presynaptic scaffolding proteins, which functionally and spatially organize synaptic vesicle clusters, neurotransmitter release sites and the associated endocytic machinery. These proteins turned out to be major presynaptic substrates for remodeling during homeostatic plasticity. Finally, we discuss cellular processes and signaling pathways acting during homeostatic molecular remodeling and their potential involvement in the maladaptive plasticity occurring in multiple neuropathologic conditions such as neurodegeneration, epilepsy and neuropsychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...