Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(6): 2501-2515, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36354007

RESUMEN

RNA 2'O-methylation is a 'self' epitranscriptomic modification allowing discrimination between host and pathogen. Indeed, human immunodeficiency virus 1 (HIV-1) induces 2'O-methylation of its genome by recruiting the cellular FTSJ3 methyltransferase, thereby impairing detection by RIG-like receptors. Here, we show that RNA 2'O-methylations interfere with the antiviral activity of interferon-stimulated gene 20-kDa protein (ISG20). Biochemical experiments showed that ISG20-mediated degradation of 2'O-methylated RNA pauses two nucleotides upstream of and at the methylated residue. Structure-function analysis indicated that this inhibition is due to steric clash between ISG20 R53 and D90 residues and the 2'O-methylated nucleotide. We confirmed that hypomethylated HIV-1 genomes produced in FTSJ3-KO cells were more prone to in vitro degradation by ISG20 than those produced in cells expressing FTSJ3. Finally, we found that reverse-transcription of hypomethylated HIV-1 was impaired in T cells by interferon-induced ISG20, demonstrating the direct antagonist effect of 2'O-methylation on ISG20-mediated antiviral activity.


Despite highly effective antiretroviral therapies, the human immunodeficiency virus (HIV-1) remains a major public health threat. Its pathogenesis depends on its ability to establish a persistent infection in cells of the immune system. Our study highlights a new insight into how HIV-1 evades early restriction by the immune system. We showed that 2'O-methylation marks found inside HIV-1 RNA promote viral evasion from the antiviral action of the interferon-stimulated gene 20-kDa protein (ISG20), an innate immune restriction factor with a nuclease activity. By disrupting the level of 2'O-methylation of the HIV-1 genome, we demonstrated that ISG20 impairs the reverse transcription process of hypomethylated viruses, as a result of viral RNA decay.


Asunto(s)
Exorribonucleasas , Infecciones por VIH , VIH-1 , ARN Viral , Humanos , Exorribonucleasas/genética , Infecciones por VIH/virología , VIH-1/genética , Interacciones Huésped-Parásitos , Interferones , Metilación , Procesamiento Postranscripcional del ARN , ARN Viral/metabolismo
2.
FEBS J ; 290(16): 3946-3962, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35997767

RESUMEN

CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions.


Asunto(s)
Hialuronoglucosaminidasa , Humanos , Movimiento Celular , Matriz Extracelular/metabolismo , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo
3.
mSphere ; 2(3)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28656178

RESUMEN

The PML (promyelocytic leukemia) protein is a member of the TRIM family, a large group of proteins that show high diversity in functions but possess a common tripartite motif giving the family its name. We and others recently reported that both murine PML (mPML) and human PML (hPML) strongly restrict the early stages of infection by HIV-1 and other lentiviruses when expressed in mouse embryonic fibroblasts (MEFs). This restriction activity was found to contribute to the type I interferon (IFN-I)-mediated inhibition of HIV-1 in MEFs. Additionally, PML caused transcriptional repression of the HIV-1 promoter in MEFs. In contrast, the modulation of the early stages of HIV-1 infection of human cells by PML has been investigated by RNA interference, with unclear results. In order to conclusively determine whether PML restricts HIV-1 or not in human cells, we used the clustered regularly interspaced short palindromic repeat with Cas9 (CRISPR-Cas9) system to knock out its gene in epithelial, lymphoid, and monocytic human cell lines. Infection challenges showed that PML knockout had no effect on the permissiveness of these cells to HIV-1 infection. IFN-I treatments inhibited HIV-1 equally whether PML was expressed or not. Overexpression of individual hPML isoforms, or of mPML, in a human T cell line did not restrict HIV-1. The presence of PML was not required for the restriction of nonhuman retroviruses by TRIM5α (another human TRIM protein), and TRIM5α was inhibited by arsenic trioxide through a PML-independent mechanism. We conclude that PML is not a restriction factor for HIV-1 in human cell lines representing diverse lineages. IMPORTANCE PML is involved in innate immune mechanisms against both DNA and RNA viruses. Although the mechanism by which PML inhibits highly divergent viruses is unclear, it was recently found that it can increase the transcription of interferon-stimulated genes (ISGs). However, whether human PML inhibits HIV-1 has been debated. Here we provide unambiguous, knockout-based evidence that PML does not restrict the early postentry stages of HIV-1 infection in a variety of human cell types and does not participate in the inhibition of HIV-1 by IFN-I. Although this study does not exclude the possibility of other mechanisms by which PML may interfere with HIV-1, we nonetheless demonstrate that PML does not generally act as an HIV-1 restriction factor in human cells and that its presence is not required for IFN-I to stimulate the expression of anti-HIV-1 genes. These results contribute to uncovering the landscape of HIV-1 inhibition by ISGs in human cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA