Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 73(4): 72, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430405

RESUMEN

BACKGROUND: Inhibition of the adenosine 2A receptor (A2AR) diminishes the immunosuppressive effects of adenosine and may complement immune-targeting drugs. This phase 2 study evaluated the A2AR antagonist AZD4635 in combination with durvalumab or oleclumab in patients with metastatic castration-resistant prostate cancer. METHODS: Patients with histologically/cytologically confirmed disease progressing within 6 months on ≥ 2 therapy lines were randomly assigned to either Module 1 (AZD4635 + durvalumab) or Module 2 (AZD4635 + oleclumab). Primary endpoints were objective response rate per RECIST v1.1 and prostate-specific antigen (PSA) response rate. Secondary endpoints included radiological progression-free survival (rPFS), overall survival, safety, and pharmacokinetics. RESULTS: Fifty-nine patients were treated (Module 1, n = 29; Module 2, n = 30). Median number of prior therapies was 4. One confirmed complete response by RECIST (Module 1) and 2 confirmed PSA responses (1 per module) were observed. The most frequent adverse events (AEs) possibly related to AZD4635 were nausea (37.9%), fatigue (20.7%), and decreased appetite (17.2%) in Module 1; nausea (50%), fatigue (30%), and vomiting (23.3%) in Module 2. No dose-limiting toxicities or treatment-related serious AEs were observed. In Module 1, AZD4635 geometric mean trough concentration was 124.9 ng/mL (geometric CV% 69.84; n = 22); exposures were similar in Module 2. In Modules 1 and 2, median (95% CI) rPFS was 2.3 (1.6 -3.8) and 1.5 (1.3- 4.0) months, respectively. Median PFS was 1.7 versus 2.3 months for patients with high versus low blood-based adenosine signature. CONCLUSION: In this heavily pretreated population, AZD4635 with durvalumab or oleclumab demonstrated minimal antitumor activity with a manageable safety profile. CLINICAL TRIAL: gov identifier: NCT04089553.


Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Antígeno Prostático Específico , Antineoplásicos/uso terapéutico , Fatiga , Adenosina , Náusea/tratamiento farmacológico
2.
Mol Cancer Ther ; 22(10): 1154-1165, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486983

RESUMEN

AZD5153, a reversible, bivalent inhibitor of the bromodomain and extraterminal family protein BRD4, has preclinical activity in multiple tumors. This first-in-human, phase I study investigated AZD5153 alone or with olaparib in patients with relapsed/refractory solid tumors or lymphoma. Adults with relapsed tumors intolerant of, or refractory to, prior therapies received escalating doses of oral AZD5153 once daily or twice daily continuously (21-day cycles), or AZD5153 once daily/twice daily continuously or intermittently plus olaparib 300 mg twice daily, until disease progression or unacceptable toxicity. Between June 30, 2017 and April 19, 2021, 34 patients received monotherapy and 15 received combination therapy. Dose-limiting toxicities were thrombocytopenia/platelet count decreased (n = 4/n = 2) and diarrhea (n = 1). The recommended phase II doses (RP2D) were AZD5153 30 mg once daily or 15 mg twice daily (monotherapy) and 10 mg once daily (intermittent schedule) with olaparib. With AZD5153 monotherapy, common treatment-emergent adverse events (TEAE) included fatigue (38.2%), thrombocytopenia, and diarrhea (each 32.4%); common grade ≥ 3 TEAEs were thrombocytopenia (14.7%) and anemia (8.8%). With the combination, common TEAEs included nausea (66.7%) and fatigue (53.3%); the most common grade ≥ 3 TEAE was thrombocytopenia (26.7%). AZD5153 had dose-dependent pharmacokinetics, with minimal accumulation, and demonstrated dose-dependent modulation of peripheral biomarkers, including upregulation of HEXIM1. One patient with metastatic pancreatic cancer receiving combination treatment had a partial response lasting 4.2 months. These results show AZD5153 was tolerable as monotherapy and in combination at the RP2Ds; common toxicities were fatigue, hematologic AEs, and gastrointestinal AEs. Strong evidence of peripheral target engagement was observed.


Asunto(s)
Antineoplásicos , Linfoma , Neoplasias , Trombocitopenia , Adulto , Humanos , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Proteínas de Ciclo Celular , Diarrea/inducido químicamente , Fatiga/inducido químicamente , Fatiga/tratamiento farmacológico , Linfoma/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Proteínas Nucleares , Proteínas de Unión al ARN , Trombocitopenia/inducido químicamente , Factores de Transcripción
3.
Br J Clin Pharmacol ; 89(9): 2775-2787, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37055936

RESUMEN

AIMS: Two phase 1 studies characterized the oral bioavailability of AZD4635 (potential anticancer therapy) and factors that may influence its pharmacokinetics (PKs; food, smoking, proton-pump inhibitors [PPIs] and CYP1A2 inhibitors) to support continued clinical development of AZD4635. METHODS: Study 1 (comparative PK study; nonsmokers) consists of Part A and Part B. Participants (fasted) in Part A were administered 50 mg of AZD4635 either as nanosuspension or capsule. In Part B, these participants were administered a 50-mg capsule either following a high-fat meal or with a PPI in the fasted state. In Study 2 (CYP1A2 mediated drug-drug interaction study), a 25-mg AZD4635 capsule was administered to smokers and nonsmokers (fasted) with or without 100 mg of fluvoxamine. RESULTS: In Study 1 (N = 21), AZD4635 exposure was comparable between the capsule and nanosuspension. The high-fat meal produced a 12% decrease in AUCinf , a ≥50% reduction in Cmax and delayed absorption (Tmax : 4.0 h vs 1.5 h) for the capsule. The PPI did not affect the oral bioavailability of the AZD4635 capsule. In Study 2 (N = 28), AZD4635 + fluvoxamine (compared with AZD4635 alone) produced ~5-fold increases in AUCinf , 2-fold increases in Cmax and prolonged AZD4635 elimination half-life in smokers (22.7 vs 9.0 h) and nonsmokers (22.4 vs 9.2 h). All treatment regimens were well tolerated. The most common adverse events included dizziness, nausea and headache. CONCLUSIONS: The high-fat meal reduced the rate but not the extent of AZD4635 absorption. The effect of gastric pH on AZD4635 was minimal. Smoking had no effect on the exposure (Cmax and AUCinf ) of AZD4635, while fluvoxamine increased AZD4635 Cmax and total exposure. No new safety concerns were identified.


Asunto(s)
Interacciones Alimento-Droga , Farmacología Clínica , Humanos , Voluntarios Sanos , Fluvoxamina , Área Bajo la Curva , Disponibilidad Biológica , Estudios Cruzados , Administración Oral
4.
Clin Cancer Res ; 28(22): 4871-4884, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044531

RESUMEN

PURPOSE: To evaluate AZD4635, an adenosine A2A receptor antagonist, as monotherapy or in combination with durvalumab in patients with advanced solid tumors. PATIENTS AND METHODS: In phase Ia (dose escalation), patients had relapsed/refractory solid tumors; in phase Ib (dose expansion), patients had checkpoint inhibitor-naïve metastatic castration-resistant prostate cancer (mCRPC) or colorectal carcinoma, non-small cell lung cancer with prior anti-PD-1/PD-L1 exposure, or other solid tumors (checkpoint-naïve or prior anti-PD-1/PD-L1 exposure). Patients received AZD4635 monotherapy (75-200 mg once daily or 125 mg twice daily) or in combination with durvalumab (AZD4635 75 or 100 mg once daily). The primary objective was safety; secondary objectives included antitumor activity and pharmacokinetics; exploratory objectives included evaluation of an adenosine gene signature in patients with mCRPC. RESULTS: As of September 8, 2020, 250 patients were treated (AZD4635, n = 161; AZD4635+durvalumab, n = 89). In phase Ia, DLTs were observed with monotherapy (125 mg twice daily; n = 2) and with combination treatment (75 mg; n = 1) in patients receiving nanosuspension. The most common treatment-related adverse events included nausea, fatigue, vomiting, decreased appetite, dizziness, and diarrhea. The RP2D of the AZD4635 capsule formulation was 75 mg once daily, as monotherapy or in combination with durvalumab. The pharmacokinetic profile was dose-proportional, and exposure was adequate to cover target with 100 mg nanosuspension or 75 mg capsule once daily. In patients with mCRPC receiving monotherapy or combination treatment, tumor responses (2/39 and 6/37, respectively) and prostate-specific antigen responses (3/60 and 10/45, respectively) were observed. High versus low blood-based adenosine signature was associated with median progression-free survival of 21 weeks versus 8.7 weeks. CONCLUSIONS: AZD4635 monotherapy or combination therapy was well tolerated. Objective responses support additional phase II combination studies in patients with mCRPC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Antagonistas del Receptor de Adenosina A2/efectos adversos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/etiología , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Adenosina , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética
5.
Front Immunol ; 12: 617316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33737925

RESUMEN

Background: Adenosine receptor type 2 (A2AR) inhibitor, AZD4635, has been shown to reduce immunosuppressive adenosine effects within the tumor microenvironment (TME) and to enhance the efficacy of checkpoint inhibitors across various syngeneic models. This study aims at investigating anti-tumor activity of AZD4635 alone and in combination with an anti-PD-L1-specific antibody (anti-PD-L1 mAb) across various TME conditions and at identifying, via mathematical quantitative modeling, a therapeutic combination strategy to further improve treatment efficacy. Methods: The model is represented by a set of ordinary differential equations capturing: 1) antigen-dependent T cell migration into the tumor, with subsequent proliferation and differentiation into effector T cells (Teff), leading to tumor cell lysis; 2) downregulation of processes mediated by A2AR or PD-L1, as well as other immunosuppressive mechanisms; 3) A2AR and PD-L1 inhibition by, respectively, AZD4635 and anti-PD-L1 mAb. Tumor size dynamics data from CT26, MC38, and MCA205 syngeneic mice treated with vehicle, anti-PD-L1 mAb, AZD4635, or their combination were used to inform model parameters. Between-animal and between-study variabilities (BAV, BSV) in treatment efficacy were quantified using a non-linear mixed-effects methodology. Results: The model reproduced individual and cohort trends in tumor size dynamics for all considered treatment regimens and experiments. BSV and BAV were explained by variability in T cell-to-immunosuppressive cell (ISC) ratio; BSV was additionally driven by differences in intratumoral adenosine content across the syngeneic models. Model sensitivity analysis and model-based preclinical study simulations revealed therapeutic options enabling a potential increase in AZD4635-driven efficacy; e.g., adoptive cell transfer or treatments affecting adenosine-independent immunosuppressive pathways. Conclusions: The proposed integrative modeling framework quantitatively characterized the mechanistic activity of AZD4635 and its potential added efficacy in therapy combinations, across various immune conditions prevailing in the TME. Such a model may enable further investigations, via simulations, of mechanisms of tumor resistance to treatment and of AZD4635 combination optimization strategies.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Antineoplásicos/farmacología , Modelos Biológicos , Receptor de Adenosina A2A/metabolismo , Microambiente Tumoral/efectos de los fármacos , Algoritmos , Animales , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Susceptibilidad a Enfermedades , Resistencia a Antineoplásicos , Quimioterapia Combinada , Isoinjertos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Clin Cancer Res ; 26(9): 2176-2187, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31953314

RESUMEN

PURPOSE: There are several agents in early clinical trials targeting components of the adenosine pathway including A2AR and CD73. The identification of cancers with a significant adenosine drive is critical to understand the potential for these molecules. However, it is challenging to measure tumor adenosine levels at scale, thus novel, clinically tractable biomarkers are needed. EXPERIMENTAL DESIGN: We generated a gene expression signature for the adenosine signaling using regulatory networks derived from the literature and validated this in patients. We applied the signature to large cohorts of disease from The Cancer Genome Atlas (TCGA) and cohorts of immune checkpoint inhibitor-treated patients. RESULTS: The signature captures baseline adenosine levels in vivo (r 2 = 0.92, P = 0.018), is reduced after small-molecule inhibition of A2AR in mice (r 2 = -0.62, P = 0.001) and humans (reduction in 5 of 7 patients, 70%), and is abrogated after A2AR knockout. Analysis of TCGA confirms a negative association between adenosine and overall survival (OS, HR = 0.6, P < 2.2e-16) as well as progression-free survival (PFS, HR = 0.77, P = 0.0000006). Further, adenosine signaling is associated with reduced OS (HR = 0.47, P < 2.2e-16) and PFS (HR = 0.65, P = 0.0000002) in CD8+ T-cell-infiltrated tumors. Mutation of TGFß superfamily members is associated with enhanced adenosine signaling and worse OS (HR = 0.43, P < 2.2e-16). Finally, adenosine signaling is associated with reduced efficacy of anti-PD1 therapy in published cohorts (HR = 0.29, P = 0.00012). CONCLUSIONS: These data support the adenosine pathway as a mediator of a successful antitumor immune response, demonstrate the prognostic potential of the signature for immunotherapy, and inform patient selection strategies for adenosine pathway modulators currently in development.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/uso terapéutico , Adenosina/metabolismo , Inmunoterapia/métodos , Neoplasias/terapia , Animales , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Pronóstico , Distribución Aleatoria , Receptores de Adenosina A2/metabolismo , Transducción de Señal/genética , Tasa de Supervivencia , Transcriptoma
7.
PLoS One ; 14(11): e0221288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31721781

RESUMEN

BRCA2 (also known as FANCD1) is a core component of the Fanconi pathway and suppresses transformation of immature T-cells in mice. However, the contribution of Fanconi-BRCA pathway deficiency to human T-cell acute lymphoblastic leukemia (T-ALL) remains undefined. We identified point mutations in 9 (23%) of 40 human T-ALL cases analyzed, with variant allele fractions consistent with heterozygous mutations early in tumor evolution. Two of these mutations were present in remission bone marrow specimens, suggesting germline alterations. BRCA2 was the most commonly mutated gene. The identified Fanconi-BRCA mutations encode hypomorphic or null alleles, as evidenced by their inability to fully rescue Fanconi-deficient cells from chromosome breakage, cytotoxicity and/or G2/M arrest upon treatment with DNA cross-linking agents. Disabling the tumor suppressor activity of the Fanconi-BRCA pathway is generally thought to require biallelic gene mutations. However, all mutations identified were monoallelic, and most cases appeared to retain expression of the wild-type allele. Using isogenic T-ALL cells, we found that BRCA2 haploinsufficiency induces selective hypersensitivity to ATR inhibition, in vitro and in vivo. These findings implicate Fanconi-BRCA pathway haploinsufficiency in the molecular pathogenesis of T-ALL, and provide a therapeutic rationale for inhibition of ATR or other druggable effectors of homologous recombination.


Asunto(s)
Proteína BRCA2/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Animales , Línea Celular Tumoral , Niño , Genes BRCA1 , Genes BRCA2 , Haploinsuficiencia , Xenoinjertos , Humanos , Células Jurkat , Masculino , Ratones , Ratones Endogámicos NOD , Mutagénesis Sitio-Dirigida , Mutación , Tolerancia a Radiación/genética , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Rayos Ultravioleta
8.
Leukemia ; 32(10): 2126-2137, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29654263

RESUMEN

The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease.


Asunto(s)
Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas Hedgehog/genética , Mutación/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transducción de Señal/genética , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Oncogenes/genética , Linfocitos T/fisiología , Pez Cebra
9.
Cancer Discov ; 8(4): 478-497, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29431698

RESUMEN

In acute myeloid leukemia (AML), chemotherapy resistance remains prevalent and poorly understood. Using functional proteomics of patient AML specimens, we identified MEF2C S222 phosphorylation as a specific marker of primary chemoresistance. We found that Mef2cS222A/S222A knock-in mutant mice engineered to block MEF2C phosphorylation exhibited normal hematopoiesis, but were resistant to leukemogenesis induced by MLL-AF9 MEF2C phosphorylation was required for leukemia stem cell maintenance and induced by MARK kinases in cells. Treatment with the selective MARK/SIK inhibitor MRT199665 caused apoptosis and conferred chemosensitivity in MEF2C-activated human AML cell lines and primary patient specimens, but not those lacking MEF2C phosphorylation. These findings identify kinase-dependent dysregulation of transcription factor control as a determinant of therapy response in AML, with immediate potential for improved diagnosis and therapy for this disease.Significance: Functional proteomics identifies phosphorylation of MEF2C in the majority of primary chemotherapy-resistant AML. Kinase-dependent dysregulation of this transcription factor confers susceptibility to MARK/SIK kinase inhibition in preclinical models, substantiating its clinical investigation for improved diagnosis and therapy of AML. Cancer Discov; 8(4); 478-97. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/tratamiento farmacológico , Factores de Transcripción MEF2/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Línea Celular , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Factores de Transcripción MEF2/química , Ratones , Ratones Transgénicos , Fosforilación , Proteómica
10.
Cell Rep ; 18(12): 2943-2956, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329686

RESUMEN

This study reveals that high-copy satellite II (HSATII) sequences in the human genome can bind and impact distribution of chromatin regulatory proteins and that this goes awry in cancer. In many cancers, master regulatory proteins form two types of cancer-specific nuclear bodies, caused by locus-specific deregulation of HSATII. DNA demethylation at the 1q12 mega-satellite, common in cancer, causes PRC1 aggregation into prominent Cancer-Associated Polycomb (CAP) bodies. These loci remain silent, whereas HSATII loci with reduced PRC1 become derepressed, reflecting imbalanced distribution of UbH2A on these and other PcG-regulated loci. Large nuclear foci of HSATII RNA form and sequester copious MeCP2 into Cancer-Associated Satellite Transcript (CAST) bodies. Hence, HSATII DNA and RNA have an exceptional capacity to act as molecular sponges and sequester chromatin regulatory proteins into abnormal nuclear bodies in cancer. The compartmentalization of regulatory proteins within nuclear structure, triggered by demethylation of "junk" repeats, raises the possibility that this contributes to further compromise of the epigenome and neoplastic progression.


Asunto(s)
Desmetilación del ADN , ADN Satélite/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neoplasias/genética , Proteínas del Grupo Polycomb/metabolismo , ARN/metabolismo , Proteína BRCA1/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Sitios Genéticos , Humanos , Modelos Biológicos , Complejo Represivo Polycomb 1/metabolismo , Agregado de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...