Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35663413

RESUMEN

Plants of the Mimosa genus are studied and used for their bioactive properties. Among bioactive phytochemicals are quercetin and myricetin, which have been demonstrated to act as antioxidants in many contexts (Taheri et al. 2020; Xu et al. 2019), including in C. elegans (Buchter et al. 2013; Grünz et al. 2012; Sugawara and Sakamoto 2020). Other phytochemicals from these plants, such as the triterpenoid phytosterol lupeol, have been shown to have antioxidant properties but have not been as extensively characterized in model organisms (Liu et al. 2021; Shai et al. 2009). Here we employed the nematode C. elegans to assess whether lupeol elicits antioxidant response in vivo . Using reporter assays for oxidative stress, we find that treatment of animals with lupeol rescues some of the effects resulting from treatment with the prooxidant paraquat. Our results demonstrate that lupeol displays antioxidant properties in vivo in C. elegans .

2.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34195824

RESUMEN

The C. elegans germline is organized as a syncytium in which each germ cell possesses an intercellular bridge that is maintained by a stable actomyosin ring and connected to a common pool of cytoplasm, termed the rachis. How germ cells undergo cytokinesis while maintaining this syncytial architecture is not completely understood. Here, we use live imaging to characterize primordial germ cell (PGC) division in C. elegans first-stage larvae. We show that each PGC possesses a stable intercellular bridge that connects it to a common pool of cytoplasm, which we term the proto-rachis. We further show that the first PGC cytokinesis is incomplete and that the stabilized cytokinetic ring progressively moves towards the proto-rachis and eventually integrates with it. Our results support a model in which the initial expansion of the C. elegans syncytial germline occurs by incomplete cytokinesis, where one daughter germ cell inherits the actomyosin ring that was newly formed by stabilization of the cytokinetic ring, while the other inherits the pre-existing stable actomyosin ring. We propose that such a mechanism of iterative cytokinesis incompletion underpins C. elegans germline expansion and maintenance.


Asunto(s)
Caenorhabditis elegans/citología , Citocinesis/fisiología , Células Germinativas/citología , Citoesqueleto de Actina/fisiología , Actomiosina/fisiología , Animales , Citoplasma/fisiología , Células Gigantes/fisiología
3.
Mol Biol Cell ; 32(9): 915-930, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33502892

RESUMEN

Investigating the complex interactions between stem cells and their native environment requires an efficient means to image them in situ. Caenorhabditis elegans germline stem cells (GSCs) are distinctly accessible for intravital imaging; however, long-term image acquisition and analysis of dividing GSCs can be technically challenging. Here we present a systematic investigation into the technical factors impacting GSC physiology during live imaging and provide an optimized method for monitoring GSC mitosis under minimally disruptive conditions. We describe CentTracker, an automated and generalizable image analysis tool that uses machine learning to pair mitotic centrosomes and that can extract a variety of mitotic parameters rapidly from large-scale data sets. We employ CentTracker to assess a range of mitotic features in a large GSC data set. We observe spatial clustering of mitoses within the germline tissue but no evidence that subpopulations with distinct mitotic profiles exist within the stem cell pool. We further find biases in GSC spindle orientation relative to the germline's distal-proximal axis and thus the niche. The technical and analytical tools provided herein pave the way for large-scale screening studies of multiple mitotic processes in GSCs dividing in situ, in an intact tissue, in a living animal, under seemingly physiological conditions.


Asunto(s)
Células Madre Germinales Adultas/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Mitosis/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Diferenciación Celular , Autorrenovación de las Células , Células Germinativas/fisiología , Aprendizaje Automático , Células Madre/fisiología
4.
Mol Biol Cell ; 29(12): 1435-1448, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29688794

RESUMEN

The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P1 blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Linaje de la Célula , Embrión de Mamíferos/citología , Puntos de Control de la Fase M del Ciclo Celular , Animales , Blastómeros/citología , Proteínas de Caenorhabditis elegans/metabolismo , Tamaño de la Célula , Embrión de Mamíferos/metabolismo , Células Germinativas , Mitosis , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA