Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(28): 6349-6354, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37418426

RESUMEN

Passive permeation of small molecules into vesicles with multiple compartments is a critical event in many chemical and biological processes. We consider the translocation of the peptide NAF-144-67 labeled with a fluorescent fluorescein dye across membranes of rhodamine-labeled 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) into liposomes with internal vesicles. Time-resolved microscopy revealed a sequential absorbance of the peptide in both the outer and inner micrometer vesicles that developed over a time period of minutes to hours, illustrating the spatial and temporal progress of the permeation. There is minimal perturbation of the membrane structure and no evidence for pore formation. On the basis of molecular dynamics simulations of NAF-144-67, we extended a local defect model to migration processes that include multiple compartments. The model captures the long residence time of the peptide within the membrane and the rate of permeation through the liposome and its internal compartments. Imaging experiments confirm the semi-quantitative description of the permeation of the model by activated diffusion and open the way for studies of more complex systems.


Asunto(s)
Liposomas , Fosfolípidos , Fosfolípidos/química , Liposomas/química , Fenómenos Químicos , Colorantes Fluorescentes/química , Péptidos , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química
2.
J Phys Chem Lett ; 14(25): 5841-5849, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37339513

RESUMEN

Cationic membrane-permeating peptides can cross membranes unassisted by transmembrane protein machinery, and there is consensus that anionic lipids facilitate this process. Although membranes are asymmetric in lipid composition, investigations of the impact of anionic lipids on peptide-membrane insertion in model vesicles primarily use symmetric anionic lipid distributions between bilayer leaflets. Here, we investigate the leaflet-specific influence of three anionic lipid headgroups [phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylglycerol (PG)] on insertion into model membranes by three cationic membrane-permeating peptides (NAF-144-67, R6W3, and WWWK). We report that outer leaflet anionic lipids enhanced peptide-membrane insertion for all peptides while inner leaflet anionic lipids did not have a significant effect except in the case of NAF-144-67 incubated with PA-containing vesicles. The insertion enhancement was headgroup-dependent for arginine-containing peptides but not WWWK. These results provide significant new insight into the potential role of membrane asymmetry in insertion of peptides into model membranes.


Asunto(s)
Péptidos de Penetración Celular , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Péptidos de Penetración Celular/química , Proteínas de la Membrana
3.
ACS Meas Sci Au ; 2(5): 475-484, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36281295

RESUMEN

Poison frogs are well-known for their fascinating ability to store alkaloids in their skin as chemical defense against predators. Chemical methods used to study these alkaloids are limited by requirements for euthanasia or stress during sampling. Here, we demonstrate sensitive and biocompatible alkaloid detection and monitoring in vivo using the MasSpec Pen, a handheld, noninvasive chemical detection device coupled to a mass spectrometer. The MasSpec Pen allowed rapid (<15 s), gentle, and consecutive molecular analysis without harm or undue stress to the animals. Through a month-long alkaloid-feeding study with the dyeing poison frog, we observed temporal dynamics of chemical sequestration in vivo by comparing frogs fed the alkaloid decahydroquinoline (DHQ) to vehicle-fed frogs. We also demonstrate the feasibility of the MasSpec Pen for the untargeted detection of rich alkaloid profiles from skin extracts of the Diablito poison frog, collected from two distinct geographical populations in Ecuador. The results obtained in this study demonstrate the utility of the MasSpec Pen for direct, rapid, and biocompatible analysis of poison frog alkaloids.

4.
Clin Chem ; 68(11): 1459-1470, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36103272

RESUMEN

BACKGROUND: Rapid identification of bacteria is critical to prevent antimicrobial resistance and ensure positive patient outcomes. We have developed the MasSpec Pen, a handheld mass spectrometry-based device that enables rapid analysis of biological samples. Here, we evaluated the MasSpec Pen for identification of bacteria from culture and clinical samples. METHODS: A total of 247 molecular profiles were obtained from 43 well-characterized strains of 8 bacteria species that are clinically relevant to osteoarticular infections, including Staphylococcus aureus, Group A and B Streptococcus, and Kingella kingae, using the MasSpec Pen coupled to a high-resolution mass spectrometer. The molecular profiles were used to generate statistical classifiers based on metabolites that were predictive of Gram stain category, genus, and species. Then, we directly analyzed samples from 4 patients, including surgical specimens and clinical isolates, and used the classifiers to predict the etiologic agent. RESULTS: High accuracies were achieved for all levels of classification with a mean accuracy of 93.3% considering training and validation sets. Several biomolecules were detected at varied abundances between classes, many of which were selected as predictive features in the classifiers including glycerophospholipids and quorum-sensing molecules. The classifiers also enabled correct identification of Gram stain type and genus of the etiologic agent from 3 surgical specimens and all classification levels for clinical specimen isolates. CONCLUSIONS: The MasSpec Pen enables identification of several bacteria at different taxonomic levels in seconds from cultured samples and has potential for culture-independent identification of bacteria directly from clinical samples based on the detection of metabolic species.


Asunto(s)
Bacterias , Staphylococcus aureus , Humanos , Bacterias/genética , Espectrometría de Masas
5.
J Phys Chem B ; 126(34): 6454-6463, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997537

RESUMEN

A physical understanding of membrane permeation and translocation by small, positively charged molecules can illuminate cell penetrating peptide mechanisms of entry and inform drug design. We have previously investigated the permeation of the doubly charged peptide WKW and proposed a defect-assisted permeation mechanism where a small molecule with +2 charge can achieve a metastable state spanning the bilayer by forming a membrane defect with charges stabilized by phospholipid phosphate groups. Here, we investigate the membrane permeation of two doubly charged peptides, WWK and WWWK, with charges separated by different lengths. Through complementary experiments and molecular dynamics simulations, we show that membrane permeation was an order of magnitude more favorable when charges were separated by an ∼2-3 Šgreater distance on WWWK compared to WWK. These results agree with the previously proposed defect-assisted permeation mechanism, where a greater distance between positive charges would require a less extreme membrane defect to stabilize the membrane-spanning metastable state. We discuss the implications of these results in understanding the membrane permeation of cell-penetrating peptides and other small, positively charged membrane permeants.


Asunto(s)
Péptidos de Penetración Celular , Membrana Dobles de Lípidos , Péptidos de Penetración Celular/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular
6.
Anal Chem ; 93(37): 12582-12593, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34432430

RESUMEN

The outbreak of COVID-19 has created an unprecedent global crisis. While the polymerase chain reaction (PCR) is the gold standard method for detecting active SARS-CoV-2 infection, alternative high-throughput diagnostic tests are of a significant value to meet universal testing demands. Here, we describe a new design of the MasSpec Pen technology integrated to electrospray ionization (ESI) for direct analysis of clinical swabs and investigate its use for COVID-19 screening. The redesigned MasSpec Pen system incorporates a disposable sampling device refined for uniform and efficient analysis of swab tips via liquid extraction directly coupled to an ESI source. Using this system, we analyzed nasopharyngeal swabs from 244 individuals including symptomatic COVID-19 positive, symptomatic negative, and asymptomatic negative individuals, enabling rapid detection of rich lipid profiles. Two statistical classifiers were generated based on the lipid information acquired. Classifier 1 was built to distinguish symptomatic PCR-positive from asymptomatic PCR-negative individuals, yielding a cross-validation accuracy of 83.5%, sensitivity of 76.6%, and specificity of 86.6%, and validation set accuracy of 89.6%, sensitivity of 100%, and specificity of 85.3%. Classifier 2 was built to distinguish symptomatic PCR-positive patients from negative individuals including symptomatic PCR-negative patients with moderate to severe symptoms and asymptomatic individuals, yielding a cross-validation accuracy of 78.4%, specificity of 77.21%, and sensitivity of 81.8%. Collectively, this study suggests that the lipid profiles detected directly from nasopharyngeal swabs using MasSpec Pen-ESI mass spectrometry (MS) allow fast (under a minute) screening of the COVID-19 disease using minimal operating steps and no specialized reagents, thus representing a promising alternative high-throughput method for screening of COVID-19.


Asunto(s)
COVID-19 , Pruebas Diagnósticas de Rutina , Humanos , Nasofaringe , SARS-CoV-2 , Sensibilidad y Especificidad , Manejo de Especímenes
7.
Clin Chem ; 67(9): 1271-1280, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263289

RESUMEN

BACKGROUND: Intraoperative tissue analysis and identification are critical to guide surgical procedures and improve patient outcomes. Here, we describe the clinical translation and evaluation of the MasSpec Pen technology for molecular analysis of in vivo and freshly excised tissues in the operating room (OR). METHODS: An Orbitrap mass spectrometer equipped with a MasSpec Pen interface was installed in an OR. A "dual-path" MasSpec Pen interface was designed and programmed for the clinical studies with 2 parallel systems that facilitated the operation of the MasSpec Pen. The MasSpec Pen devices were autoclaved before each surgical procedure and were used by surgeons and surgical staff during 100 surgeries over a 12-month period. RESULTS: Detection of mass spectral profiles from 715 in vivo and ex vivo analyses performed on thyroid, parathyroid, lymph node, breast, pancreatic, and bile duct tissues during parathyroidectomies, thyroidectomies, breast, and pancreatic neoplasia surgeries was achieved. The MasSpec Pen enabled gentle extraction and sensitive detection of various molecular species including small metabolites and lipids using a droplet of sterile water without causing apparent tissue damage. Notably, effective molecular analysis was achieved while no limitations to sequential histologic tissue analysis were identified and no device-related complications were reported for any of the patients. CONCLUSIONS: This study shows that the MasSpec Pen system can be successfully incorporated into the OR, allowing direct detection of rich molecular profiles from tissues with a seconds-long turnaround time that could be used to inform surgical and clinical decisions without disrupting tissue analysis workflows.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Espectrometría de Masas , Paratiroidectomía , Glándula Tiroides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...