Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33853786

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Asunto(s)
Dominio Catalítico/fisiología , Unión Proteica/fisiología , Proteínas no Estructurales Virales/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/genética , Tratamiento Farmacológico de COVID-19
2.
bioRxiv ; 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33269349

RESUMEN

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

3.
J Biol Chem ; 284(2): 1202-12, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18986991

RESUMEN

Penicillin-binding protein 2 (PBP2) from N. gonorrhoeae is the major molecular target for beta-lactam antibiotics used to treat gonococcal infections. PBP2 from penicillin-resistant strains of N. gonorrhoeae harbors an aspartate insertion after position 345 (Asp-345a) and 4-8 additional mutations, but how these alter the architecture of the protein is unknown. We have determined the crystal structure of PBP2 derived from the penicillin-susceptible strain FA19, which shows that the likely effect of Asp-345a is to alter a hydrogen-bonding network involving Asp-346 and the SXN triad at the active site. We have also solved the crystal structure of PBP2 derived from the penicillin-resistant strain FA6140 that contains four mutations near the C terminus of the protein. Although these mutations lower the second order rate of acylation for penicillin by 5-fold relative to wild type, comparison of the two structures shows only minor structural differences, with the positions of the conserved residues in the active site essentially the same in both. Kinetic analyses indicate that two mutations, P551S and F504L, are mainly responsible for the decrease in acylation rate. Melting curves show that the four mutations lower the thermal stability of the enzyme. Overall, these data suggest that the molecular mechanism underlying antibiotic resistance contributed by the four mutations is subtle and involves a small but measurable disordering of residues in the active site region that either restricts the binding of antibiotic or impedes conformational changes that are required for acylation by beta-lactam antibiotics.


Asunto(s)
Farmacorresistencia Bacteriana , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/efectos de los fármacos , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Penicilinas/química , Penicilinas/farmacología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Proteínas de Unión a las Penicilinas/genética , Desnaturalización Proteica , Estructura Terciaria de Proteína , Temperatura
4.
J Mol Biol ; 381(2): 383-93, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18602645

RESUMEN

The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with beta-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 DD-peptidase structures reveal the presence of a specific binding site for the D-alpha-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these beta-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and beta-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 DD-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , Actinomycetales/enzimología , Arginina/química , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X/métodos , Escherichia coli/enzimología , Modelos Biológicos , Modelos Moleculares , Estructura Molecular , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Estructura Secundaria de Proteína , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Especificidad por Sustrato , beta-Lactamas/química , beta-Lactamas/metabolismo
5.
J Mol Biol ; 359(1): 122-36, 2006 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-16618494

RESUMEN

MltA is a lytic transglycosylase of Gram-negative bacteria that cleaves the beta-1,4 glycosidic linkages between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan. We have determined the crystal structures of MltA from Neisseria gonorrhoeae and Escherichia coli (NgMltA and EcMltA), which have only 21.5% sequence identity. Both proteins have two main domains separated by a deep groove. Domain 1 shows structural similarity with the so-called double-psi barrel family of proteins. Comparison of the two structures reveals substantial differences in the relative positions of domains 1 and 2 such that the active site groove in NgMltA is much wider and appears more able to accommodate peptidoglycan substrate than EcMltA, suggesting that domain closure occurs after substrate binding. Docking of a peptidoglycan molecule into the structure of NgMltA reveals a number of conserved residues that are likely involved in substrate binding, including a potential binding pocket for the peptidyl moieties. This structure supports the assignment of Asp405 as the acid catalyst responsible for cleavage of the glycosidic bond. In EcMltA, the equivalent residue is Asp328, which has been identified previously. The structures also suggest a catalytic role for Asp393 (Asp317 in EcMltA) in activating the C6 hydroxyl group during formation of the 1,6-anhydro linkage. Finally, in comparison to EcMltA, NgMltA contains a unique third domain that is an insertion within domain 2. The domain is beta in structure and may mediate protein-protein interactions that are specific to peptidoglycan metabolism in N.gonorrhoeae.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/enzimología , Glicosiltransferasas/química , Neisseria gonorrhoeae/enzimología , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Carbohidratos/química , Cristalografía por Rayos X , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA