Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659793

RESUMEN

One of the mechanisms that can lead to the formation of new species occurs through the evolution of reproductive barriers. However, recent research has demonstrated that hybridization has been pervasive across the tree of life even in the presence of strong barriers. Swordtail fishes (genus Xiphophorus) are an emerging model system for studying the interface between these barriers and hybridization. We document overlapping mechanisms that act as barriers between closely related species, X. birchmanni and X. cortezi, by combining genomic sequencing from natural hybrid populations, artificial crosses, behavioral assays, sperm performance, and developmental studies. We show that strong assortative mating plays a key role in maintaining subpopulations with distinct ancestry in natural hybrid populations. Lab experiments demonstrate that artificial F1 crosses experience dysfunction: crosses with X. birchmanni females were largely inviable and crosses with X. cortezi females had a heavily skewed sex ratio. Using F2 hybrids we identify several genomic regions that strongly impact hybrid viability. Strikingly, two of these regions underlie genetic incompatibilities in hybrids between X. birchmanni and its sister species X. malinche. Our results demonstrate that ancient hybridization has played a role in the origin of this shared genetic incompatibility. Moreover, ancestry mismatch at these incompatible regions has remarkably similar consequences for phenotypes and hybrid survival in X. cortezi × X. birchmanni hybrids as in X. malinche × X. birchmanni hybrids. Our findings identify varied reproductive barriers that shape genetic exchange between naturally hybridizing species and highlight the complex evolutionary outcomes of hybridization.

2.
Nature ; 626(7997): 119-127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200310

RESUMEN

The evolution of reproductive barriers is the first step in the formation of new species and can help us understand the diversification of life on Earth. These reproductive barriers often take the form of hybrid incompatibilities, in which alleles derived from two different species no longer interact properly in hybrids1-3. Theory predicts that hybrid incompatibilities may be more likely to arise at rapidly evolving genes4-6 and that incompatibilities involving multiple genes should be common7,8, but there has been sparse empirical data to evaluate these predictions. Here we describe a mitonuclear incompatibility involving three genes whose protein products are in physical contact within respiratory complex I of naturally hybridizing swordtail fish species. Individuals homozygous for mismatched protein combinations do not complete embryonic development or die as juveniles, whereas those heterozygous for the incompatibility have reduced complex I function and unbalanced representation of parental alleles in the mitochondrial proteome. We find that the effects of different genetic interactions on survival are non-additive, highlighting subtle complexity in the genetic architecture of hybrid incompatibilities. Finally, we document the evolutionary history of the genes involved, showing signals of accelerated evolution and evidence that an incompatibility has been transferred between species via hybridization.


Asunto(s)
Núcleo Celular , Complejo I de Transporte de Electrón , Peces , Genes Letales , Especiación Genética , Hibridación Genética , Proteínas Mitocondriales , Animales , Alelos , Complejo I de Transporte de Electrón/genética , Peces/clasificación , Peces/embriología , Peces/genética , Peces/crecimiento & desarrollo , Homocigoto , Genes Letales/genética , Especificidad de la Especie , Desarrollo Embrionario/genética , Proteínas Mitocondriales/genética , Núcleo Celular/genética , Heterocigoto , Evolución Molecular
3.
Evolution ; 77(4): 995-1005, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753531

RESUMEN

Over the past two decades researchers have documented the extent of natural hybridization between closely related species using genomic tools. Many species across the tree of life show evidence of past hybridization with their evolutionary relatives. In some cases, this hybridization is complex-involving gene flow between more than two species. While hybridization is common over evolutionary timescales, some researchers have proposed that it may be even more common in contemporary populations where anthropogenic disturbance has modified a myriad of aspects of the environments in which organisms live and reproduce. Here, we develop a flexible tool for local ancestry inference in hybrids derived from three source populations and describe a complex, recent hybridization event between distantly related swordtail fish lineages (Xiphophorus) and its potential links to anthropogenic disturbance.


Asunto(s)
Ciprinodontiformes , Ecosistema , Animales , Evolución Biológica , Hibridación Genética , Genoma , Flujo Génico , Ciprinodontiformes/genética
4.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187753

RESUMEN

Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.

5.
Mol Ecol ; 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510780

RESUMEN

Understanding how organisms adapt to changing environments is a core focus of research in evolutionary biology. One common mechanism is adaptive introgression, which has received increasing attention as a potential route to rapid adaptation in populations struggling in the face of ecological change, particularly global climate change. However, hybridization can also result in deleterious genetic interactions that may limit the benefits of adaptive introgression. Here, we used a combination of genome-wide quantitative trait locus mapping and differential gene expression analyses between the swordtail fish species Xiphophorus malinche and X. birchmanni to study the consequences of hybridization on thermotolerance. While these two species are adapted to different thermal environments, we document a complicated architecture of thermotolerance in hybrids. We identify a region of the genome that contributes to reduced thermotolerance in individuals heterozygous for X. malinche and X. birchmanni ancestry, as well as widespread misexpression in hybrids of genes that respond to thermal stress in the parental species, particularly in the circadian clock pathway. We also show that a previously mapped hybrid incompatibility between X. malinche and X. birchmanni contributes to reduced thermotolerance in hybrids. Together, our results highlight the challenges of understanding the impact of hybridization on complex ecological traits and its potential impact on adaptive introgression.

6.
PLoS Genet ; 18(1): e1009914, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085234

RESUMEN

Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.


Asunto(s)
Ciprinodontiformes/genética , Proteínas de Peces/genética , Animales , Cruzamientos Genéticos , Evolución Molecular , Genoma , Hibridación Genética , Masculino
7.
Evolution ; 75(10): 2524-2539, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34460102

RESUMEN

Natural hybridization events provide unique windows into the barriers that keep species apart as well as the consequences of their breakdown. Here, we characterize hybrid populations formed between the northern swordtail fish Xiphophorus cortezi and Xiphophorus birchmanni from collection sites on two rivers. We use simulations and new genetic reference panels to develop sensitive and accurate local ancestry calling in this novel system. Strikingly, we find that hybrid populations on both rivers consist of two genetically distinct subpopulations: a cluster of pure X. birchmanni individuals and one of phenotypically intermediate hybrids that derive ∼85-90% of their genome from X. cortezi. Simulations suggest that initial hybridization occurred ∼150 generations ago at both sites, with little evidence for contemporary gene flow between subpopulations. This population structure is consistent with strong assortative mating between individuals of similar ancestry. The patterns of population structure uncovered here mirror those seen in hybridization between X. birchmanni and its sister species, Xiphophorus malinche, indicating an important role for assortative mating in the evolution of hybrid populations. Future comparisons will provide a window into the shared mechanisms driving the outcomes of hybridization not only among independent hybridization events between the same species but also across distinct species pairs.


Asunto(s)
Ciprinodontiformes , Genética de Población , Animales , Ciprinodontiformes/genética , Flujo Génico , Genoma , Humanos , Hibridación Genética
8.
Elife ; 102021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346866

RESUMEN

In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.


Asunto(s)
Genoma , Hibridación Genética , Flujo Génico , Genómica/métodos , Genotipo , Humanos
9.
Curr Biol ; 31(5): 923-935.e11, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33513352

RESUMEN

Biologists since Darwin have been fascinated by the evolution of sexually selected ornaments, particularly those that reduce viability. Uncovering the genetic architecture of these traits is key to understanding how they evolve and are maintained. Here, we investigate the genetic architecture and evolutionary loss of a sexually selected ornament, the "sword" fin extension that characterizes many species of swordtail fish (Xiphophorus). Using sworded and swordless sister species of Xiphophorus, we generated a mapping population and show that the sword ornament is polygenic-with ancestry across the genome explaining substantial variation in the trait. After accounting for the impacts of genome-wide ancestry, we identify one major-effect quantitative trait locus (QTL) that explains ~5% of the overall variation in the trait. Using a series of approaches, we narrow this large QTL interval to several likely candidate genes, including genes involved in fin regeneration and growth. Furthermore, we find evidence of selection on ancestry at one of these candidates in four natural hybrid populations, consistent with selection against the sword in these populations.


Asunto(s)
Evolución Biológica , Ciprinodontiformes/anatomía & histología , Ciprinodontiformes/genética , Variación Genética , Preferencia en el Apareamiento Animal , Animales , Femenino , Masculino , Fenotipo , Sitios de Carácter Cuantitativo
10.
Science ; 368(6492): 731-736, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409469

RESUMEN

The establishment of reproductive barriers between populations can fuel the evolution of new species. A genetic framework for this process posits that "incompatible" interactions between genes can evolve that result in reduced survival or reproduction in hybrids. However, progress has been slow in identifying individual genes that underlie hybrid incompatibilities. We used a combination of approaches to map the genes that drive the development of an incompatibility that causes melanoma in swordtail fish hybrids. One of the genes involved in this incompatibility also causes melanoma in hybrids between distantly related species. Moreover, this melanoma reduces survival in the wild, likely because of progressive degradation of the fin. This work identifies genes underlying a vertebrate hybrid incompatibility and provides a glimpse into the action of these genes in natural hybrid populations.


Asunto(s)
Ciprinodontiformes/genética , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Hibridación Genética , Melanoma/genética , Melanoma/virología , Proteínas Tirosina Quinasas Receptoras/genética , Alelos , Aletas de Animales/patología , Animales , Quimera , Sitios Genéticos , Estudio de Asociación del Genoma Completo
11.
Mol Ecol Resour ; 20(4): 1141-1151, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32324964

RESUMEN

It has become clear that hybridization between species is much more common than previously recognized. As a result, we now know that the genomes of many modern species, including our own, are a patchwork of regions derived from past hybridization events. Increasingly researchers are interested in disentangling which regions of the genome originated from each parental species using local ancestry inference methods. Due to the diverse effects of admixture, this interest is shared across disparate fields, from human genetics to research in ecology and evolutionary biology. However, local ancestry inference methods are sensitive to a range of biological and technical parameters which can impact accuracy. Here we present paired simulation and ancestry inference pipelines, mixnmatch and ancestryinfer, to help researchers plan and execute local ancestry inference studies. mixnmatch can simulate arbitrarily complex demographic histories in the parental and hybrid populations, selection on hybrids, and technical variables such as coverage and contamination. ancestryinfer takes as input sequencing reads from simulated or real individuals, and implements an efficient local ancestry inference pipeline. We perform a series of simulations with mixnmatch to pinpoint factors that influence accuracy in local ancestry inference and highlight useful features of the two pipelines. mixnmatch is a powerful tool for simulations of hybridization while ancestryinfer facilitates local ancestry inference on real or simulated data.


Asunto(s)
Genética de Población/métodos , Genoma/genética , Hibridación Genética/genética , Simulación por Computador , Genética , Humanos , Modelos Genéticos , Programas Informáticos
12.
Science ; 360(6389): 656-660, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29674434

RESUMEN

To investigate the consequences of hybridization between species, we studied three replicate hybrid populations that formed naturally between two swordtail fish species, estimating their fine-scale genetic map and inferring ancestry along the genomes of 690 individuals. In all three populations, ancestry from the "minor" parental species is more common in regions of high recombination and where there is linkage to fewer putative targets of selection. The same patterns are apparent in a reanalysis of human and archaic admixture. These results support models in which ancestry from the minor parental species is more likely to persist when rapidly uncoupled from alleles that are deleterious in hybrids. Our analyses further indicate that selection on swordtail hybrids stems predominantly from deleterious combinations of epistatically interacting alleles.


Asunto(s)
Quimera/genética , Epistasis Genética , Evolución Molecular , Recombinación Genética , Selección Genética , Alelos , Animales , Peces , Hibridación Genética
13.
J Evol Biol ; 31(6): 882-892, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29577482

RESUMEN

Alfred Russel Wallace proposed classifying Amazon rivers based on their colour and clarity: white, black and clear water. Wallace also proposed that black waters could mediate diversification and yield distinct fish species. Here, we bring evidence of speciation mediated by water type in the sailfin tetra (Crenuchus spilurus), a fish whose range encompasses rivers of very distinct hydrochemical conditions. Distribution of the two main lineages concords with Wallace's water types: one restricted to the acidic and nutrient-poor waters of the Negro River (herein Rio Negro lineage) and a second widespread throughout the remaining of the species' distribution (herein Amazonas lineage). These lineages occur over a very broad geographical range, suggesting that despite occurring in regions separated by thousands of kilometres, individuals of the distinct lineages fail to occupy each other's habitats, hundreds of metres apart and not separated by physical barrier. Reproductive isolation was assessed in isolated pairs exposed to black-water conditions. All pairs with at least one individual of the lineage not native to black waters showed significantly lower spawning success, suggesting that the water type affected the fitness and contributed to reproductive isolation. Our results endorse Wallace's intuition and highlight the importance of ecological factors in shaping diversity of the Amazon fish fauna.


Asunto(s)
Evolución Biológica , Characiformes/genética , Characiformes/fisiología , Especiación Genética , Variación Genética , Agua , Adaptación Fisiológica/genética , Animales , ADN Mitocondrial/genética
14.
Proc Natl Acad Sci U S A ; 114(41): 10936-10941, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973863

RESUMEN

The emergence of new species is driven by the establishment of mechanisms that limit gene flow between populations. A major challenge is reconciling the theoretical and empirical importance of assortative mating in speciation with the ease with which it can fail. Swordtail fish have an evolutionary history of hybridization and fragile prezygotic isolating mechanisms. Hybridization between two swordtail species likely arose via pollution-mediated breakdown of assortative mating in the 1990s. Here we track unusual genetic patterns in one hybrid population over the past decade using whole-genome sequencing. Hybrids in this population formed separate genetic clusters by 2003, and maintained near-perfect isolation over 25 generations through strong ancestry-assortative mating. However, we also find that assortative mating was plastic, varying in strength over time and disappearing under manipulated conditions. In addition, a nearby population did not show evidence of assortative mating. Thus, our findings suggest that assortative mating may constitute an intermittent and unpredictable barrier to gene flow, but that variation in its strength can have a major effect on how hybrid populations evolve. Understanding how reproductive isolation varies across populations and through time is critical to understanding speciation and hybridization, as well as their dependence on disturbance.


Asunto(s)
Evolución Biológica , Ciprinodontiformes/genética , Flujo Génico , Especiación Genética , Preferencia en el Apareamiento Animal , Aislamiento Reproductivo , Animales , Ciprinodontiformes/clasificación , Genoma , Secuenciación Completa del Genoma
15.
Curr Zool ; 63(1): 21-26, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29491959

RESUMEN

Artifice-the manipulation of social and environmental stimuli-is fundamental to research in animal behavior. State-of-the-art techniques have been developed to generate and present complex visual stimuli. These techniques have unique strengths and limitations. However, many of the issues with synthetic animation and virtual reality are common to playback experiments in general, including those using unmanipulated video or auditory stimuli. Playback experiments, in turn, fall into the broader category of experiments that artificially manipulate the array of stimuli experienced by a subject. We argue that the challenges of designing and interpreting experiments using virtual reality or synthetic animations are largely comparable to those of studies using older technologies or addressing other modalities, and that technology alone is unlikely to solve these challenges. We suggest that appropriate experimental designs are the key to validating behavioral responses to artificial stimuli and to interpreting all studies using artifice, including those that present complex visual displays.

16.
Mol Ecol ; 25(11): 2661-79, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26937625

RESUMEN

A rapidly increasing body of work is revealing that the genomes of distinct species often exhibit hybrid ancestry, presumably due to postspeciation hybridization between closely related species. Despite the growing number of documented cases, we still know relatively little about how genomes evolve and stabilize following hybridization, and to what extent hybridization is functionally relevant. Here, we examine the case of Xiphophorus nezahualcoyotl, a teleost fish whose genome exhibits significant hybrid ancestry. We show that hybridization was relatively ancient and is unlikely to be ongoing. Strikingly, the genome of X. nezahualcoyotl has largely stabilized following hybridization, distinguishing it from examples such as human-Neanderthal hybridization. Hybridization-derived regions are remarkably distinct from other regions of the genome, tending to be enriched in genomic regions with reduced constraint. These results suggest that selection has played a role in removing hybrid ancestry from certain functionally important regions. Combined with findings in other systems, our results raise many questions about the process of genomic stabilization and the role of selection in shaping patterns of hybrid ancestry in the genome.


Asunto(s)
Evolución Biológica , Ciprinodontiformes/genética , Hibridación Genética , Animales , Ciprinodontiformes/clasificación , Genoma , Genómica , Filogenia , Análisis de Secuencia de ADN
17.
Neotrop. ichthyol ; 13(2): 389-400, 26/06/2015. graf
Artículo en Inglés | LILACS | ID: lil-752468

RESUMEN

We explore the trophic role that a diverse sympatric group of fishes in the genus Chirostoma play in a large, shallow lake in central Mexico, Lake Chapala. We use δ13C and δ15N stable isotope - based food web analyses to explore how they relate to other components of the Lake Chapala ecosystem. We find five Chirostoma species in top trophic levels of the Chapala food web compared to other fishes, relying on a combination of zooplankton, fish and benthic resources as energy sources. Food web metric analyses showed generally overlapping trophic niches for members of Chirostoma, especially in terms of δ13C. However, C. jordani had lower mean δ15N isotopic values than C. promelas. As a group, "pescados blancos" (C. sphyraena and C. promelas) also had higher δ15N signatures than "charales" (C. consocium, C. jordani and C. labarcae) reflecting greater piscivory, but these differences were not strong for all food web metrics used. Trophic overlap among species of Chirostoma in Lake Chapala raises questions about the forces that might have led to a morphologically diverse but functionally similar and monophyletic group of species.


Exploramos el papel trófico de un diverso grupo de peces (género Chirostoma) que habita en simpatría en el Lago Chapala, México central. Utilizamos isótopos estables de δ13C y δ15N para explorar la relación que guardan éstos peces con otros componentes del ecosistema. Encontramos a Chirostoma en niveles altos de la red trófica de Chapala, dependiendo energéticamente de zooplankton, peces y recursos del bentos. Análisis de parámetros de la red trófica demostraron traslape de nicho trófico para cinco miembros de Chirostoma, especialmente con relación a δ13C. Sin embargo, C. jordani tuvo un menor valor promedio de δ15N que C. promelas. Al ser analizados como grupo, los "pescados blancos" (C. sphyraena, C. promelas) tuvieron niveles promedio de δ15N mayores que los "charales" (C. consocium, C. jordani, C. labarcae), indicando mayor ictiofagia, pero las diferencias no fueron significativas para todos los parámetros de red trófica utilizados. El traslape trófico entre las especies de Chirostoma en Chapala da origen a cuestionamientos acerca de las fuerzas que pueden haber intervenido en el surgimiento de un morfológicamente diverso pero funcionalmente similar grupo monofilético de peces.


Asunto(s)
Animales , Isótopos/análisis , Isótopos/química , Peces/metabolismo
18.
Elife ; 32014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24898754

RESUMEN

Hybridization is increasingly being recognized as a common process in both animal and plant species. Negative epistatic interactions between genes from different parental genomes decrease the fitness of hybrids and can limit gene flow between species. However, little is known about the number and genome-wide distribution of genetic incompatibilities separating species. To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between these species, despite them being recently diverged. Many of these incompatibilities are likely the result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns of genomic divergence at these regions imply that genetic incompatibilities play a significant role in limiting gene flow even in young species.


Asunto(s)
Mapeo Cromosómico/métodos , Epistasis Genética , Peces/genética , Hibridación Genética , Animales , Simulación por Computador , Femenino , Flujo Génico , Biblioteca de Genes , Genoma , Genotipo , Desequilibrio de Ligamiento , Masculino , Modelos Genéticos , Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...