Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 19(25): e2207431, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932939

RESUMEN

Molecular crystals displaying elastic flexibility have important applications in the fields of optoelectronics and nanophotonic technologies. Understanding the mechanisms by which these materials bend is critical to the design of future materials incorporating these properties. Based on the known elastic properties of bis(acetylacetonato)copper(II), a series of 14 aliphatic derivatives are synthesized and crystallized. All those which grew in a needle morphology display noticeable elasticity, with 1D chains of π-stacked molecules parallel to the long metric length of the crystal a consistent crystallographic feature. Crystallographic mapping is used to measure the mechanism of elasticity at an atomic-scale. Symmetric derivatives with ethyl and propyl side chains are found to have different mechanisms of elasticity, which are further distinguished from the previously reported mechanism of bis(acetylacetonato)copper(II). While crystals of bis(acetylacetonato)copper(II) are known to bend elastically via a molecular rotation mechanism, the elasticity of the compounds presented is facilitated by expansion of their π-stacking interactions.

2.
J Am Chem Soc ; 143(32): 12560-12566, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34342976

RESUMEN

It is extremely difficult to anticipate the structure and the stereochemistry of a complex, particularly when the ligand is flexible and the metal node adopts diverse coordination numbers. When trivalent lanthanides (LnIII) and enantiopure amino acid ligands are utilized as building blocks, self-assembly sometimes yields rare chiral polynuclear structures. In this study, an enantiopure carboxyl-functionalized amino acid-based ligand with C3 symmetry reacts with lanthanum cations to give a homochiral porous coordination cage, (Δ/Λ)12-PCC-57. The dodecanuclear lanthanide cage has an unprecedented octahedral "cage-in-cage" framework. During the self-assembly, the chirality is transferred from the enantiopure ligand and fixed by the binuclear lanthanide cluster to give 12 metal centers that have either Δ or Λ homochiral stereochemistry. The cage exhibits excellent enantioselective separation of racemic alcohols, 2,3-dihydroquinazolinones, and multiple commercially available drugs. This finding exhibits a rare example of a multinuclear lanthanide complex with a dual-walled topology and homochirality. The highly ordered self-assembly and self-sorting of flexible amino acids and lanthanides shed light on the chiral transformation between different complicated artificial systems that mimic natural enzymes.

3.
Chem Sci ; 12(11): 4104-4110, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-34163681

RESUMEN

Modulating different stacking modes of nanoscale metal-organic frameworks (MOFs) introduces different properties and functionalities but remains a great challenge. Here, we describe a morphology engineering method to modulate the stacking modes of nanoscale NU-901. The nanoscale NU-901 is stacked through solvent removal after one-pot solvothermal synthesis, in which different morphologies from nanosheets (NS) to interpenetrated nanosheets (I-NS) and nanoparticles (NP) were obtained successfully. The stacked NU-901-NS, NU-901-I-NS, and NU-901-NP exhibited relatively aligned stacking, random stacking, and close packing, respectively. The three stacked nanoscale NU-901 exhibited different separation abilities and all showed better performance than bulk phase NU-901. Our work provides a new morphology engineering route for the modulation of the stacking modes of nano-sized MOFs and improves the separation abilities of MOFs.

4.
Angew Chem Int Ed Engl ; 58(46): 16682-16690, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31518476

RESUMEN

Linker desymmetrization has been witnessed as a powerful design strategy for the discovery of highly connected metal-organic frameworks (MOFs) with unprecedented topologies. Herein, we introduce molecular pivot-hinge installation as a linker desymmetrization strategy to evolve the topology of highly connected rare-earth (RE) MOFs, where a pivot group is placed in the center of a linker similar to a hinge. By tuning the composition of pivot groups and steric hindrances of the substituents on various linker rotamers, MOFs with various topologies can be obtained. The combination of L-SO2 with C2v symmetry and 12-connected RE9 clusters leads to the formation of a fascinating (4,12)-c dfs new topology. Interestingly, when replacing L-SO2 with a tetrahedra linker L-O, the stacking behaviors of RE-organic layers switch from an eclipsed mode to a staggered stacking mode, leading to the discovery of an intriguing hjz topology. Additionally, the combination of the RE cluster and a linker [(L-(CH3 )6 )] with more bulky groups gives rise to a flu topology with a new 8-c inorganic cluster. The diversity of these RE-MOFs was further enhanced through post-synthetic installation of linkers with various functional groups. Functionalization of each linker with acidic and basic units in the mesoporous RE-based PCN-905-SO2 allows for efficient cascade catalytic transformation within the functionalized channels.

5.
J Am Chem Soc ; 141(37): 14524-14529, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31484478

RESUMEN

Sophisticated chemical processes widely observed in biological cells require precise apportionment regulation of building units, which inspires researchers to develop tailorable architectures with controllable heterogeneity for replication, recognition and information storage. However, it remains a substantial challenge to endow multivariate materials with internal sequences and controllable apportionments. Herein, we introduce a novel strategy to manipulate the apportionment of functional groups in multivariate metal-organic frameworks (MTV-MOFs) by preincorporating interlocked linkers into framework materials. As a proof of concept, the imprinted apportionment of functional groups within ZIF-8 was achieved by exchanging imine-based linker templates with original linkers initially. The removal of linker fragments by hydrolysis can be achieved via postsynthetic labilization, leading to the formation of architectures with controlled heterogeneity. The distributions of functional groups in the resulting imprinted MOFs can be tuned by judicious control of the interlocked chain length, which was further analyzed by computational methods. This work provides synthetic tools for precise control of pore environment and functionality sequences inside multicomponent materials.

6.
Chem Soc Rev ; 48(17): 4707-4730, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31339148

RESUMEN

Natural enzymes catalyze reactions in their substrate-binding cavities, exhibiting high specificity and efficiency. In an effort to mimic the structure and functionality of enzymes, discrete coordination cages were designed and synthesized. These self-assembled systems have a variety of confined cavities, which have been applied to accelerate conventional reactions, perform substrate-specific reactions, and manipulate regio- and enantio-selectivity. Many coordination cages or cage-catalyst composites have achieved unprecedented results, outperforming their counterparts in different catalytic reactions. This tutorial review summarizes recent developments of coordination cages across three key approaches to coordination cage catalysis: (1) cavity promoted reactions, (2) embedding of active sites in the structure of the cage, and (3) encapsulation of catalysts within the cage. Special emphasis of the review involves (1) introduction of the structure and property of the coordination cage, (2) discussion of the catalytic pathway mediated by the cage, (3) elucidation of the structure-property relationship between the cage and the designated reaction. This work will summarize the recent progress in supramolecular catalysis and attract more researchers to pursue cavity-promoted reactions using discrete coordination cages.

8.
Angew Chem Int Ed Engl ; 57(35): 11325-11328, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29998602

RESUMEN

Elastically flexible crystals form an emerging class of materials that exhibit a range of notable properties. The mechanism of thermal expansion in flexible crystals of bis(acetylacetonato)copper(II) is compared with the mechanism of molecular motion induced by bending and it is demonstrated that the two mechanisms are distinct. Upon bending, individual molecules within the crystal structure reversibly rotate, while thermal expansion results predominantly in an increase in intermolecular separations with only minor changes to molecular orientation through rotation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...