Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(22): eaba5660, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32518828

RESUMEN

Actuators at the tip of a submillimetric catheter could facilitate in vivo interventional procedures at cellular scales by enabling tissue biopsy and manipulation or supporting active micro-optics. However, the dominance of frictional forces at this scale makes classical mechanism problematic. Here, we report the design of a microscale piston, with a maximum dimension of 150 µm, fabricated with two-photon lithography onto the tip of 140-µm-diameter capillaries. An oil drop method is used to create a seal between the piston and the cylinder that prevents any leakage below 185-mbar pressure difference while providing lubricated friction between moving parts. This piston generates forces that increase linearly with pressure up to 130 µN without breaking the liquid seal. The practical value of the design is demonstrated with its integration with a microgripper that can grasp, move, and release 50-µm microspheres. Such a mechanism opens the way to micrometer-size catheter actuation.

2.
ACS Appl Mater Interfaces ; 11(39): 35577-35586, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31484477

RESUMEN

Flexible electronic materials combined with micro-3D fabrication present new opportunities for wearable biosensors and medical devices. This Research Article introduces a novel carbon-nanotube-coated force sensor, successfully combining the advantages of flexible conductive nanomaterials and the versatility of two photon polymerization technologies for creating functional 3D microstructures. The device employs carbon-nanotube-coated microsprings with varying configurations and geometries for  real-time force sensing. To demonstrate its practical value, the device has first been embodied as a patch sensor for transcutaneous monitoring of human arterial pulses, followed by the development of a multiple-point force-sensitive catheter for real-time noninvasive intraluminal intervention. The results illustrate the potential of leveraging advanced nanomaterials and micro-3D-printing for developing new medical devices.


Asunto(s)
Microscopía de Sonda de Barrido , Nanoestructuras/química , Nanotubos de Carbono/química , Impresión Tridimensional
3.
Sci Robot ; 4(34)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33137778

RESUMEN

Because minimally invasive surgery is increasingly used to target small lesions, demand is growing for miniaturized tools-such as microcatheters, articulated microforceps, or tweezers-that incorporate sensing and actuation for precision surgery. Although existing microfabrication techniques have addressed the construction of these devices, accurate integration and functionalization of chemical and physical sensors represent major challenges. This paper presents a microrobotic platform for the functionalization of fibers of diameters from 140 to 830 micrometers, with a patterning precision of 5 micrometers and an orientation error below 0.4°. To achieve this, we developed two 2 millimeter-by-3 millimeter, 200-micrometer-thick microrobots to align floating electronic circuits on a fiber during a wet transfer process. The position and orientation of the microrobots were controlled at the air/water interface by a permanent magnet. The stiffness of the position controlled was 0.2 newton millimeter, leading to an average force of 0.5 newton. The nonhomogeneous magnetic field of the magnet, associated with different preferred magnetization directions recorded in the microrobots, allowed the distance between the two microrobots to be precisely controlled. This extra degree of freedom was used to control the microrobot pair as a tweezer to grab and release floating electronic patterns, whereas the others were used to align the pattern position and orientation with the fiber. A model of this control, as well as the microrobots' interaction through surface tension, is proposed. Detailed performance validation is provided, and various exemplar sensor embodiments on a 200-micrometer-diameter fiber and three-dimensional devices are demonstrated.

4.
Biosens Bioelectron ; 123: 77-84, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359958

RESUMEN

Nature is a great source of inspiration for the development of solutions for biomedical problems. We present a novel biosensor design utilizing two-photon polymerisation and graphene to fabricate an enhanced biosensing platform for the detection of motile bacteria. A cage comprising venous valve-inspired directional micro-structure is fabricated around graphene-based sensing electronics. The asymmetric 3D micro-structure promotes motile cells to swim from outside the cage towards the inner-most chamber, resulting in concentrated bacteria surrounding the central sensing region, thus enhancing the sensing signal. The concentrating effect is proved across a range of cell cultures - from 101 CFU/ml to 109 CFU/ml. Fluorescence analysis shows a 3.38-3.5 times enhanced signal. pH sensor presents a 2.14-3.08 times enhancement via the detection of cellar metabolite. Electrical measurements demonstrate an 8.8-26.7 times enhanced current. The proposed platform provides a new way of leveraging bio-inspired 3D printing and 2D materials for the development of sensing devices for biomedical applications.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Biosensibles , Técnicas Electroquímicas , Grafito/química , Fenómenos Fisiológicos Bacterianos , Movimiento Celular/fisiología
5.
Opt Express ; 26(11): 14186-14200, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29877460

RESUMEN

Fiber-optic sensors have numerous existing and emerging applications spanning areas from industrial process monitoring to medical diagnosis. Two of the most common fiber sensors are based on the fabrication of Bragg gratings or Fabry-Perot etalons. While these techniques offer a large array of sensing targets, their utility can be limited by the difficulties involved in fabricating forward viewing probes (Bragg gratings) and in obtaining sufficient signal-to-noise ratios (Fabry-Perot systems). In this article we present a micro-scale fiber-optic force sensor produced using direct laser writing (DLW). The fabrication entails a single-step process that can be undertaken in a reliable and repeatable manner using a commercial DLW system. The sensor is made of a series of thin plates (i.e. Fabry-Perot etalons), which are supported by springs that compress under an applied force. At the proximal end of the fiber, the interferometric changes that are induced as the sensor is compressed are read out using reflectance spectroscopy, and the resulting spectral changes are calibrated with respect to applied force. This calibration is performed using either singular value decomposition (SVD) followed by linear regression or artificial neural networks. We describe the design and optimization of this device, with a particular focus on the data analysis required for calibration. Finally, we demonstrate proof-of-concept force sensing over the range 0-50 µN, with a measurement error of approximately 1.5 µN.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Interferometría/instrumentación , Rayos Láser , Aprendizaje Automático , Calibración , Diseño de Equipo , Análisis de Falla de Equipo , Redes Neurales de la Computación , Fenómenos Físicos , Refractometría/instrumentación , Escritura
6.
Small ; 14(16): e1703964, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29479810

RESUMEN

Microscale robotic devices have myriad potential applications including drug delivery, biosensing, cell manipulation, and microsurgery. In this work, a tethered, 3D, compliant grasper with an integrated force sensor is presented, the entirety of which is fabricated on the tip of an optical fiber in a single-step process using 2-photon polymerization. This gripper can prove useful for the interrogation of biological microstructures such as alveoli, villi, or even individual cells. The position of the passively actuated grasper is controlled via micromanipulation of the optical fiber, and the microrobotic device measures approximately 100 µm in length and breadth. The force estimation is achieved using optical interferometry: high-dimensional spectral readings are used to train artificial neural networks to predict the axial force exerted on/by the gripper. The design, characterization, and testing of the grasper are described and its real-time force-sensing capability with an accuracy below 2.7% of the maximum calibrated force is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...