Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(22): 4610-4627, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39118388

RESUMEN

BACKGROUND AND PURPOSE: Fibrotic lung remodelling after a respiratory viral infection represents a debilitating clinical sequela. Studying or managing viral-fibrotic sequela remains challenging, due to limited therapeutic options and lack of understanding of mechanisms. This study determined whether protein disulfide isomerase A3 (PDIA3) and secreted phosphoprotein 1 (SPP1), which are associated with pulmonary fibrosis, can promote influenza-induced lung fibrotic remodelling and whether inhibition of PDIA3 or SPP1 can resolve viral-mediated fibrotic remodelling. EXPERIMENTAL APPROACH: A retrospective analysis of TriNetX data sets was conducted. Serum from healthy controls and influenza A virus (IAV)-infected patients was analysed. An inhibitor of PDIA3, punicalagin, and a neutralizing antibody for SPP1 were administered in mice. Macrophage cells treated with macrophage colony-stimulating factor (M-CSF) were used as a cell culture model. KEY RESULTS: The TriNetX data set showed an increase in lung fibrosis and decline in lung function in flu-infected acute respiratory distress syndrome (ARDS) patients compared with non-ARDS patients. Serum samples revealed a significant increase in SPP1 and PDIA3 in influenza-infected patients. Lung PDIA3 and SPP1 expression increased following viral infection in mouse models. Punicalagin administration 2 weeks after IAV infection in mice caused a significant decrease in lung fibrosis and improved oxygen saturation. Administration of neutralizing SPP1 antibody decreased lung fibrosis. Inhibition of PDIA3 decreased SPP1secretion from macrophages, in association with diminished disulfide bonds in SPP1. CONCLUSION AND IMPLICATIONS: The PDIA3-SPP1 axis promotes post-influenza lung fibrosis in mice and that pharmacological inhibition of PDIA3 or SPP1 can treat virus-induced lung fibrotic sequela.


Asunto(s)
Pulmón , Osteopontina , Proteína Disulfuro Isomerasas , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/metabolismo , Animales , Humanos , Ratones , Osteopontina/metabolismo , Masculino , Pulmón/patología , Pulmón/metabolismo , Pulmón/virología , Femenino , Estudios Retrospectivos , Gripe Humana/tratamiento farmacológico , Gripe Humana/metabolismo , Ratones Endogámicos C57BL , Persona de Mediana Edad , Taninos Hidrolizables/farmacología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R370-R382, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436058

RESUMEN

Obesity is often accompanied by increased adipose tissue inflammation, a process that is partially driven by adipose tissue-resident macrophages. In this study, we explored the potential for plant-derived dietary compounds to exert anti-inflammatory effects in macrophages that alleviate obesity-associated adipocyte dysfunction. Capsaicin (CAP), schisandrin A (SA), enterodiol (END), and enterolactone (ENL) treatment polarized J774 macrophages to an "M2" or anti-inflammatory phenotype and inhibited responses to stimulation with lipopolysaccharide (LPS). Furthermore, these compounds blocked inflammasome activation when administered just before ATP-induced NLRP3 activation, as evidenced by the abrogation of IL-1ß release in mouse macrophages and human peripheral blood monocytes. The addition of CAP, SA, or ENL during the differentiation of bone marrow-derived macrophages was also sufficient to inhibit LPS-induced IL-6 and TNFα production. Finally, CAP, END, and ENL treatment during differentiation of 3T3-L1 adipocytes induced an adiponectin-high phenotype accompanied by increases in thermogenic gene expression, and conditioned media from these adipocytes inhibited LPS-induced production of IL-1ß, IL-6, and TNFα from J774 macrophages. These polarizing effects were partially mediated by the elevated adiponectin and decreased syndecan-4 in the adipocyte-conditioned media. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.NEW & NOTEWORTHY The utility of food-based products to prevent or alleviate chronic conditions such as obesity and its associated comorbidities is an attractive approach. Capsaicin, schisandrin A, enterodiol, and enterolactone, phytochemicals present in traditional medicinal food, decreased proinflammatory cytokine production from macrophages that, in turn, reduced obesity-associated adipocyte dysfunction. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.


Asunto(s)
4-Butirolactona/análogos & derivados , Capsaicina , Ciclooctanos , Lignanos , Compuestos Policíclicos , Factor de Necrosis Tumoral alfa , Animales , Ratones , Humanos , Capsaicina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Adiponectina , Lipopolisacáridos/toxicidad , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Obesidad/complicaciones , Obesidad/metabolismo , Inflamación/metabolismo , Antiinflamatorios , Macrófagos/metabolismo
3.
Physiol Rep ; 12(1): e15901, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38171546

RESUMEN

Obesity is a global health problem characterized by excessive fat accumulation, driven by adipogenesis and lipid accumulation. Long non-coding RNAs (lncRNAs) have recently been implicated in regulating adipogenesis and adipose tissue function. Mouse lncRNA U90926 was previously identified as a repressor of in vitro adipogenesis in 3T3-L1 preadipocytes. Consequently, we hypothesized that, in vivo, U90926 may repress adipogenesis, and hence its deletion would increase weight gain and adiposity. We tested the hypothesis by applying U90926-deficient (U9-KO) mice to a high-throughput phenotyping pipeline. Compared with WT, U9-KO mice showed no major differences across a wide range of behavioral, neurological, and other physiological parameters. In mice fed a standard diet, we have found no differences in obesity-related phenotypes, including weight gain, fat mass, and plasma concentrations of glucose, insulin, triglycerides, and free fatty acids, in U9-KO mice compared to WT. U90926 deficiency lacked a major effect on white adipose tissue morphology and gene expression profile. Furthermore, in mice fed a high-fat diet, we found increased expression of U90926 in adipose tissue stromal vascular cell fraction, yet observed no effect of U90926 deficiency on weight gain, fat mass, adipogenesis marker expression, and immune cell infiltration into the adipose tissue. These data suggest that the U90926 lacks an essential role in obesity-related phenotypes and adipose tissue biology in vivo.


Asunto(s)
ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Aumento de Peso , Dieta Alta en Grasa/efectos adversos , Fenotipo , Ratones Endogámicos C57BL
4.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L71-L82, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988602

RESUMEN

Obesity is a risk factor for asthma. Individuals with asthma and obesity often have poor asthma control and do not respond as well to therapies such as inhaled corticosteroids and long-acting bronchodilators. Weight loss improves asthma control, with a 5%-10% loss in body mass necessary and sufficient to lead to clinically relevant improvements. Preclinical studies have demonstrated the pathogenic contribution of adipocytes from obese mice to the augmented production of proinflammatory cytokines from airway epithelial cells and the salutary effects of diet-induced weight loss to decrease these consequences. However, the effects of adipocyte-derived products on airway epithelial function in human obesity remain incompletely understood. We utilized samples collected from a 12-mo longitudinal study of subjects with obesity undergoing weight loss (bariatric) surgery including controls without asthma and subjects with allergic and nonallergic obese asthma. Visceral adipose tissue (VAT) samples were collected during bariatric surgery and from recruited normal weight controls without asthma undergoing elective abdominal surgery. Human bronchial epithelial (HBEC3-KT) cells were exposed to plasma or conditioned media from cultured VAT adipocytes with or without agonists. Human bronchial smooth muscle (HBSM) cells were similarly exposed to adipocyte-conditioned media. Proinflammatory cytokines were augmented in supernatants from HBEC3-KT cells exposed to plasma as compared with subsequent visits. Whereas exposure to obese adipocyte-conditioned media induced proinflammatory responses, there were no differences between groups in both HBEC3-KT and HBSM cells. These data show that bariatric surgery and subsequent weight loss beneficially change the circulating factors that augment human airway epithelial and bronchial smooth muscle cell proinflammatory responses.NEW & NOTEWORTHY This longitudinal study following subjects with asthma and obesity reveals that weight loss following bariatric surgery decreases the capacity for plasma to augment proinflammatory cytokine secretion by human bronchial epithelial cells, implicating that circulating but not adipocyte-derived factors are important modulators in obese asthma.


Asunto(s)
Asma , Cirugía Bariátrica , Animales , Ratones , Humanos , Estudios Longitudinales , Medios de Cultivo Condicionados , Obesidad/cirugía , Obesidad/complicaciones , Cirugía Bariátrica/efectos adversos , Bronquios/patología , Citocinas , Células Epiteliales/patología , Pérdida de Peso/fisiología
5.
Front Pharmacol ; 14: 1248873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680710

RESUMEN

Obesity is a risk factor for severe influenza, and asthma exacerbations caused by respiratory viral infections. We investigated mechanisms that increase the severity of airway disease related to influenza in obesity using cells derived from obese and lean individuals, and in vitro and in vivo models. Primary human nasal epithelial cells (pHNECs) derived from obese compared with lean individuals developed increased inflammation and injury in response to influenza A virus (IAV). Obese mice infected with influenza developed increased airway inflammation, lung injury and elastance, but had a decreased interferon response, compared with lean mice. Lung arachidonic acid (AA) levels increased in obese mice infected with IAV; arachidonic acid increased inflammatory cytokines and injury markers in response to IAV in human bronchial epithelial (HBE) cells. Obesity in mice, and AA in HBE cells, increased activation of p38 MAPK signaling following IAV infection; inhibiting this pathway attenuated inflammation, injury and tissue elastance responses, and improved survival. In summary, obesity increases disease severity in response to influenza infection through activation of the p38 MAPK pathway in response to altered arachidonic acid signaling.

6.
J Cachexia Sarcopenia Muscle ; 14(6): 2579-2590, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37727010

RESUMEN

BACKGROUND: Cancer and its treatment can adversely affect skeletal muscle, impacting physical function, treatment response and survival. No studies, however, have comprehensively characterized these muscle adaptations longitudinally in human patients at the cellular level. METHODS: We examined skeletal muscle size and function from the whole body to the sub-cellular level in 11 patients with non-small cell lung cancer (NSCLC; 6 male/5 female, mean age 58 ± 3 years) studied over a 2-month observation period starting during their first cycle of standard of care cancer treatment and in 11 age- and sex-matched healthy controls (HC) without a current or past history of cancer. Biopsies of the vastus lateralis were performed to assess muscle fibre size, contractility and mitochondrial content, along with assessments of physical function, whole muscle size and function, and circulating cytokines. RESULTS: Body weight, composition and thigh muscle area and density were unaltered over time in patients with NSCLC, while muscle density was lower in patients with NSCLC versus HC (P = 0.03). Skeletal muscle fibre size decreased by 18% over time in patients (all P = 0.02) and was lower than HC (P = 0.02). Mitochondrial fractional area and density did not change over time in patients, but fractional area was lower in patients with NSCLC compared with HC (subsarcolemmal, P = 0.04; intermyofibrillar, P = 0.03). Patients with NSCLC had higher plasma concentrations of IL-6 (HC 1.40 ± 0.50; NSCLC 4.71 ± 4.22; P < 0.01), GDF-15 (HC 569 ± 166; NSCLC 2071 ± 1168; P < 0.01) and IL-8/CXCL8 (HC 4.9 ± 1.8; NSCLC 10.1 ± 6.0; P = 0.02) compared with HC, but there were no changes in inflammatory markers in patients with NSCLC over time. No changes were observed in markers of satellite cell activation or DNA damage in patients and no group differences were noted with HC. Whole-muscle strength was preserved over time in patients with NSCLC coincident with improved single fibre contractility. CONCLUSIONS: This study is the first to comprehensively examine longitudinal alterations in skeletal muscle fibre size and function in patients with NSCLC and suggests that muscle fibre atrophy occurs during cancer treatment despite weight stability and no changes in conventional clinical measurements of whole body or thigh muscle size over this period.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/patología , Fuerza Muscular
7.
J Immunol ; 211(4): 648-657, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37405700

RESUMEN

Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.


Asunto(s)
Histonas , Suramina , Ratones , Animales , Histonas/metabolismo , Suramina/farmacología , Células Endoteliales/metabolismo , Endotelio/metabolismo , Hemorragia
8.
Aging Brain ; 3: 100072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408793

RESUMEN

Prior studies in younger adults showed that reducing the normally high intake of the saturated fatty acid, palmitic acid (PA), in the North American diet by replacing it with the monounsaturated fatty acid, oleic acid (OA), decreased blood concentrations and secretion by peripheral blood mononuclear cells (PBMCs) of interleukin (IL)-1ß and IL-6 and changed brain activation in regions of the working memory network. We examined the effects of these fatty acid manipulations in the diet of older adults. Ten subjects, aged 65-75 years, participated in a randomized, cross-over trial comparing 1-week high PA versus low PA/high OA diets. We evaluated functional magnetic resonance imaging (fMRI) using an N-back test of working memory and a resting state scan, cytokine secretion by lipopolysaccharide (LPS)-stimulated PBMCs, and plasma cytokine concentrations. During the low PA compared to the high PA diet, we observed increased activation for the 2-back minus 0-back conditions in the right dorsolateral prefrontal cortex (Broadman Area (BA) 9; p < 0.005), but the effect of diet on working memory performance was not significant (p = 0.09). We observed increased connectivity between anterior regions of the salience network during the low PA/high OA diet (p < 0.001). The concentrations of IL-1ß (p = 0.026), IL-8 (p = 0.013), and IL-6 (p = 0.009) in conditioned media from LPS-stimulated PBMCs were lower during the low PA/high OA diet. This study suggests that lowering the dietary intake of PA down-regulated pro-inflammatory cytokine secretion and altered working memory, task-based activation and resting state functional connectivity in older adults.

9.
Front Allergy ; 4: 1187945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377691

RESUMEN

Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.

10.
J Immunol ; 210(6): 807-819, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36705532

RESUMEN

Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.


Asunto(s)
ARN Largo no Codificante , Choque Séptico , Ratones , Animales , ARN Largo no Codificante/genética , Interleucina-6 , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Mamíferos/genética
11.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L228-L242, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625485

RESUMEN

More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.


Asunto(s)
Asma , Intolerancia a la Glucosa , Animales , Ratones , Alérgenos , Asma/metabolismo , Dieta , Modelos Animales de Enfermedad , Oxidasas Duales , Inflamación , Interleucina-13 , Interleucina-33 , Leptina , Obesidad , Pyroglyphidae
12.
Chest ; 163(4): 753-762, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36610669

RESUMEN

BACKGROUND: The purpose of this study was to investigate physiological phenotypes of asthma in obesity. RESEARCH QUESTION: Do physiological responses during bronchoconstriction distinguish different groups of asthma in people with obesity, and also differentiate from responses simply related to obesity? STUDY DESIGN AND METHODS: Cross-sectional study of people with obesity (31 with asthma and 22 without lung disease). Participants underwent methacholine challenge testing with measurement of spirometry and respiratory system impedance by oscillometry. RESULTS: Participants had class III obesity (BMI, 46.7 ± 6.6 kg/m2 in control subjects and 47.2 ± 8.2 kg/m2 in people with asthma). Most participants had significant changes in peripheral airway impedance in response to methacholine: in control subjects, resistance at 5 Hz measured by oscillometry increased by 45% ± 27% and area under the reactance curve (AX) by 268% ± 236% in response to 16 mg/mL methacholine; in people with asthma, resistance at 5 Hz measured by oscillometry increased by 52% ± 38% and AX by 361% ± 295% in response to provocation concentration producing a 20% fall in FEV1 dose of methacholine. These responses suggest that obesity predisposes to peripheral airway reactivity. Two distinct groups of asthma emerged based on respiratory system impedance: one with lower reactance (baseline AX, 11.8; interquartile range, 9.9-23.4 cm H2O/L) and more concordant bronchoconstriction in central and peripheral airways; the other with high reactance (baseline AX, 46.7; interquartile range, 23.2-53.7 cm H2O/L) and discordant bronchoconstriction responses in central and peripheral airways. The high reactance asthma group included only women, and reported significantly more gastroesophageal reflux disease, worse chest tightness, more wheeze, and more asthma exacerbations than the low reactance group. INTERPRETATION: Peripheral airway reactivity detected by oscillometry is common in obese control subjects and obese people with asthma. There is a subgroup of obese asthma characterized by significant peripheral airway dysfunction by oscillometry out of proportion to spirometric airway dysfunction. This peripheral dysfunction represents clinically significant respiratory disease not readily assessed by spirometry.


Asunto(s)
Asma , Femenino , Humanos , Cloruro de Metacolina , Estudios Transversales , Asma/complicaciones , Asma/diagnóstico , Sistema Respiratorio , Espirometría , Pruebas de Provocación Bronquial , Obesidad/complicaciones , Resistencia de las Vías Respiratorias/fisiología , Volumen Espiratorio Forzado
13.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L141-L153, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511516

RESUMEN

Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.


Asunto(s)
Asma , Eosinofilia , Animales , Asma/metabolismo , Pulmón/metabolismo , Obesidad/metabolismo , Inflamación/patología , Pyroglyphidae , Eosinofilia/patología , Modelos Animales de Enfermedad
14.
J Allergy Clin Immunol Glob ; 1(4): 282-298, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36466740

RESUMEN

Background: Individuals with allergic asthma exhibit lung inflammation and remodeling accompanied by methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility, and they can present with a range of mild-to-severe disease amenable or resistant to therapeutic intervention, respectively. There remains a need for alternatives or complements to existing treatments that could control the physiologic manifestations of allergic asthma. Objectives: Our aim was to examine the hypothesis that because ketone bodies elicit anti-inflammatory activity and are effective in mitigating the methacholine hyperresponsiveness associated with obese asthma, increasing systemic concentrations of ketone bodies would diminish pathologic outcomes in asthma-relevant cell types and in mouse models of allergic asthma. Methods: We explored the effects of ketone bodies on allergic asthma-relevant cell types (macrophages, airway epithelial cells, CD4 T cells, and bronchial smooth muscle cells) in vitro as well as in vivo by using preclinical models representative of several endotypes of allergic asthma to determine whether promotion of ketosis through feeding a ketogenic diet or providing a ketone precursor or a ketone ester dietary supplement could affect immune and inflammatory parameters as well as methacholine hyperresponsiveness. Results: In a dose-dependent manner, the ketone bodies acetoacetate and ß-hydroxybutyrate (BHB) decreased proinflammatory cytokine secretion from mouse macrophages and airway epithelial cells, decreased house dust mite (HDM) extract-induced IL-8 secretion from human airway epithelial cells, and decreased cytokine production from polyclonally and HDM-activated T cells. Feeding a ketogenic diet, providing a ketone body precursor, or supplementing the diet with a ketone ester increased serum BHB concentrations and decreased methacholine hyperresponsiveness in several acute HDM sensitization and challenge models of allergic asthma. A ketogenic diet or ketone ester supplementation decreased methacholine hyperresponsiveness in an HDM rechallenge model of chronic allergic asthma. Ketone ester supplementation synergized with corticosteroid treatment to decrease methacholine hyperresponsiveness in an HDM-driven model of mixed-granulocytic severe asthma. HDM-induced morphologic changes in bronchial smooth muscle cells were inhibited in a dose-dependent manner by BHB, as was HDM protease activity. Conclusions: Increasing systemic BHB concentrations through dietary interventions could provide symptom relief for several endotypes of allergic asthmatic individuals through effects on multiple asthma-relevant cells.

15.
J Immunol Methods ; 509: 113329, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35933049

RESUMEN

Macrophages are important mediators of skeletal muscle function in both healthy and diseased states. In vivo specific depletion of macrophages provides an experimental method to understand physiological and pathophysiological effects of macrophages. Systemic depletion of macrophages can deplete skeletal muscle macrophages but also alters systemic inflammatory responses and metabolism, which confounds the muscle specific effects of macrophage depletion. The primary aim of this manuscript is to evaluate two methods of murine intramuscular macrophage depletion in an acute lung injury-associated indirect skeletal muscle wasting mouse model. Adult C57BL/6 (WT) and Macrophage Fas-Induced Apoptosis (MaFIA, C57BL/6-Tg) mice received clodronate liposomes or the dimerization drug AP20187 through intramuscular injection of the tibialis anterior muscle compartment, respectively. Vehicle control was injected in the contralateral muscle. We demonstrate intramuscular AP20187 in the MaFIA mouse depletes macrophages but causes an infiltration of CD45 intermediate neutrophils. In contrast, intramuscular clodronate liposomes successfully depletes macrophages without an associated increase in CD45 intermediate cells. In conclusion, intramuscular clodronate is effective for selective depletion of muscle macrophages without eliciting acute inflammation seen with AP20187 in MaFIA mice. This technique is an important tool to study the functional roles of macrophages in skeletal muscle.


Asunto(s)
Ácido Clodrónico , Liposomas , Animales , Ácido Clodrónico/metabolismo , Ácido Clodrónico/farmacología , Liposomas/metabolismo , Macrófagos , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo
16.
Front Pharmacol ; 13: 917917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814217

RESUMEN

The abundance, anatomical distribution, and vascularity of skeletal muscle make it a potentially important contributor to local cytokine production and systemic cytokine abundance during inflammatory events. An orchestrated balance between the production of pro- and anti-inflammatory mediators is necessary for proper immune function, yet the contribution of the body's largest organ system, comprised primarily of skeletal muscle myocytes that fuse to form myofibers, to this process is largely unknown. Endotoxin (lipopolysaccharide, LPS) stimulates toll-like receptor 4 (TLR4) to induce the production of several pro-inflammatory cytokines, including interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2), by a of myriad cell types. We sought to quantify the influence of myofibers on systemic cytokine concentrations following an acute endotoxemia challenge. To accomplish this, we generated muscle specific conditional knockouts for TLR4 (TLR4SMKO), IL-6 (IL6SMKO), and CCL2 (CCL2SMKO). We administered low concentrations of intravenous LPS (IV LPS) to these receptor and effector knockout mice and collected samples after 3 h. Using gene expression analysis of gastrocnemius muscle and serum cytokine measurements after IV LPS, we determined that deletion of myofiber IL-6 or CCL2 led to a 93% and 57% reduction of these specific cytokines in the systemic circulation, respectively. Myofiber specific TLR4 deletion decreased the expression of IL-6, CCL2, and C-X-C motif chemokine ligand 1 (CXCL1) in the gastrocnemius muscle. These data indicate the critical involvement and direct contribution of myofibers during the early systemic inflammatory cytokine response to endotoxin.

17.
Mucosal Immunol ; 15(5): 977-989, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35654836

RESUMEN

The NADPH oxidase DUOX1 contributes to epithelial production of alarmins, including interleukin (IL)-33, in response to injurious triggers such as airborne protease allergens, and mediates development of mucus metaplasia and airway remodeling in chronic allergic airways diseases. DUOX1 is also expressed in non-epithelial lung cell types, including macrophages that play an important role in airway remodeling during chronic lung disease. We therefore conditionally deleted DUOX1 in either lung epithelial or monocyte/macrophage lineages to address its cell-specific actions in innate airway responses to acute airway challenge with house dust mite (HDM) allergen, and in chronic HDM-driven allergic airway inflammation. As expected, acute responses to airway challenge with HDM, as well as type 2 inflammation and related features of airway remodeling during chronic HDM-induced allergic inflammation, were largely driven by DUOX1 with the respiratory epithelium. However, in the context of chronic HDM-driven inflammation, DUOX1 deletion in macrophages also significantly impaired type 2 cytokine production and indices of mucus metaplasia. Further studies revealed a contribution of macrophage-intrinsic DUOX1 in macrophage recruitment upon chronic HDM challenge, as well as features of macrophage activation that impact on type 2 inflammation and remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Hipersensibilidad , Alérgenos , Animales , Antígenos Dermatofagoides , Oxidasas Duales , Inflamación , Pulmón , Macrófagos , Metaplasia , Moco , Pyroglyphidae
18.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L243-L257, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936508

RESUMEN

Obese asthmatics tend to have severe, poorly controlled disease and exhibit methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility. Substantial weight loss in obese asthmatics or in mouse models of the condition decreases methacholine hyperresponsiveness. Ketone bodies are rapidly elevated during weight loss, coinciding with or preceding relief from asthma-related comorbidities. As ketone bodies may exert numerous potentially therapeutic effects, augmenting their systemic concentrations is being targeted for the treatment of several conditions. Circulating ketone body levels can be increased by feeding a ketogenic diet or by providing a ketone ester dietary supplement, which we hypothesized would exert protective effects in mouse models of inherent obese asthma. Weight loss induced by feeding a low-fat diet to mice previously fed a high-fat diet was preceded by increased urine and blood levels of the ketone body ß-hydroxybutyrate (BHB). Feeding a ketogenic diet for 3 wk to high-fat diet-fed obese mice or genetically obese db/db mice increased BHB concentrations and decreased methacholine hyperresponsiveness without substantially decreasing body weight. Acute ketone ester administration decreased methacholine responsiveness of normal mice, and dietary ketone ester supplementation of high-fat diet-fed mice decreased methacholine hyperresponsiveness. Ketone ester supplementation also transiently induced an "antiobesogenic" gut microbiome with a decreased Fermicutes/Bacteroidetes ratio. Dietary interventions to increase systemic BHB concentrations could provide symptom relief for obese asthmatics without the need for the substantial weight loss required of patients to elicit benefits to their asthma through bariatric surgery or other diet or lifestyle alterations.


Asunto(s)
Asma/fisiopatología , Hiperreactividad Bronquial/fisiopatología , Cetosis/terapia , Obesidad/fisiopatología , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/metabolismo , Animales , Asma/microbiología , Dieta Alta en Grasa , Dieta Cetogénica , Modelos Animales de Enfermedad , Ésteres/administración & dosificación , Microbioma Gastrointestinal , Cuerpos Cetónicos/metabolismo , Masculino , Cloruro de Metacolina , Ratones Endogámicos C57BL , Obesidad/microbiología , Pérdida de Peso
19.
PLoS One ; 16(12): e0261618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34932607

RESUMEN

Current methods of small animal exercise involve either voluntary (wheel running) or forced (treadmill running) protocols. Although commonly used, each have several drawbacks which cause hesitancy to adopt these methods. While mice will instinctively run on a wheel, the distance and time spent running can vary widely. Forced exercise, while controllable, puts animals in stressful environments in which they are confined and often shocked for "encouragement." Additionally, both methods require expensive equipment and software, which limit these experiments to well-funded laboratories. To counter these issues, we developed a non-invasive mouse running device aimed to reduce handler-induced stress, provide time- and distance-based stopping conditions, and enable investigators with limited resources to easily produce and use the device. The Lockable Open-Source Training-Wheel (LOST-Wheel) was designed to be 3D printed on any standard entry-level printer and assembled using a few common tools for around 20 USD. It features an on-board screen and is capable of tracking distances, running time, and velocities of mice. The LOST-Wheel overcomes the largest drawback to voluntary exercise, which is the inability to control when and how long mice run, using a servo driven mechanism that locks and unlocks the running surface according to the protocol of the investigator. While the LOST-Wheel can be used without a computer connection, we designed an accompanying application to provide scientists with additional analyses. The LOST-Wheel Logger, an R-based application, displays milestones and plots on a user-friendly dashboard. Using the LOST-Wheel, we implemented a timed running experiment that showed distance-dependent decreases in serum myostatin as well as IL-6 gene upregulation in muscle. To make this device accessible, we are releasing the designs, application, and manual in an open-source format. The implementation of the LOST-Wheel and future iterations will improve upon existing murine exercise equipment and research.


Asunto(s)
Condicionamiento Físico Animal/instrumentación , Animales , Ratones , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Condicionamiento Físico Animal/estadística & datos numéricos , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Carrera/fisiología , Carrera/estadística & datos numéricos , Factores de Tiempo
20.
Physiol Rep ; 9(22): e15116, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34822216

RESUMEN

Obesity alters the risks and outcomes of inflammatory lung diseases. It is important to accurately recapitulate the obese state in animal models to understand these effects on the pathogenesis of disease. Diet-induced obesity is a commonly used model of obesity, but when applied to other disease models like acute respiratory distress syndrome, pneumonia, and asthma, it yields widely divergent. We hypothesized high-fat chow storage conditions would affect lipid oxidation and inflammatory response in the lungs of lipopolysaccharide (LPS)-challenged mice. For 6 weeks, C57BL/6crl mice were fed either a 10% (low-fat diet, LFD) or 60% (high-fat diet, HFD) stored at room temperature (RT, 23°C) for up to 7, 14, 21, or 42 days. Mice were treated with nebulized LPS to induce lung inflammation, and neutrophil levels in bronchoalveolar lavage were determined 24 h later. Lipid oxidation (malondialdehyde, MDA) was assayed by thiobarbituric acid reactive substances in chow and mouse plasma. Concentrations of MDA in chow and plasma rose in proportion to the duration of RT chow storage. Mice fed a HFD stored <2 weeks at RT had an attenuated response 24 h after LPS compared with mice fed an LFD. This effect was reversed after 2 weeks of chow storage at RT. Chow stored above freezing underwent lipid oxidation associated with significant alterations in the LPS-induced pulmonary inflammatory response. Our data show that storage conditions affect lipid peroxidation, which in turn affects pulmonary inflammatory responses in a mouse model of disease. It also suggests changes in the microbiome, although not significantly different suggests decreased variety and richness of bacteria in the gut, a large aspect of the immune system. Dietary composition and storage of chow may also affect pulmonary inflammation and the gut microbiome in humans.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Alimentación Animal , Dieta Alta en Grasa , Almacenamiento de Alimentos , Inflamación/metabolismo , Malondialdehído/metabolismo , Obesidad/metabolismo , Neumonía/metabolismo , Temperatura , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/microbiología , Animales , Dieta con Restricción de Grasas , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Inflamación/microbiología , Metabolismo de los Lípidos , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , Neumonía/inducido químicamente , Neumonía/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...