Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Heliyon ; 10(15): e35752, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170185

RESUMEN

Brain glucose hypometabolism and insulin alterations are common features of many neurological diseases. Herein we sought to corroborate the brain glucose hypometabolism that develops with ageing in 12-months old Tau-VLW transgenic mice, a model of tauopathy, as well as to determine whether this model showed signs of altered peripheral glucose metabolism. Our results demonstrated that 12-old months Tau mice exhibited brain glucose hypometabolism as well as basal hyperglycemia, impaired glucose tolerance, hyperinsulinemia, and signs of insulin resistance. Then, we further studied the effect of chronic metformin treatment (9 months) in Tau-VLW mice from 9 to 18 months of age. Longitudinal PET neuroimaging studies revealed that chronic metformin altered the temporal profile in the progression of brain glucose hypometabolism associated with ageing. Besides, metformin altered the content and/or phosphorylation of key components of the insulin signal transduction pathway in the frontal cortex leading to significant changes in the content of the active forms. Thus, metformin increased the expression of pAKT-Y474 while reducing pmTOR-S2448 and pGSK3ß. These changes might be related, at least partially, to a slow progression of ageing, neurological damage, and cognitive decline. Metformin also improved the peripheral glucose tolerance and the ability of the Tau-VLW mice to maintain their body weight through ageing. Altogether our study shows that the tau-VLW mice could be a useful model to study the potential interrelationship between tauopathy and central and peripheral glucose metabolism alterations. More importantly our results suggest that chronic metformin treatment may have direct beneficial central effects by post-transcriptional modulation of key components of the insulin signal transduction pathway.

2.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254102

RESUMEN

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Asunto(s)
Benzamidas , Carcinoma Epitelial de Ovario , Adhesión Celular , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Neoplasias Ováricas , Neoplasias Peritoneales , Animales , Femenino , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Anticuerpos Monoclonales , Carcinoma Epitelial de Ovario/metabolismo , Epitelio , Proteínas de la Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilasa 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/metabolismo , Proteómica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilasa 2/metabolismo , Adhesión Celular/genética
3.
J Integr Neurosci ; 22(3): 75, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37258443

RESUMEN

BACKGROUND: Epilepsy is one of the most common neurologic diseases, and around 30% of all epilepsies, particularly the temporal lobe epilepsy (TLE), are highly refractory to current pharmacological treatments. Abnormal synchronic neuronal activity, brain glucose metabolism alterations, neurodegeneration and neuroinflammation are features of epilepsy. Further, neuroinflammation has been shown to contribute to dysregulation of neuronal excitability and the progression of epileptogenesis. Flufenamic acid (FLU), a non-steroidal anti-inflammatory drug, is also characterized by its wide properties as a dose-dependent ion channel modulator. In this context, in vitro studies have shown that it abolishes seizure-like events in neocortical slices stimulated with a gamma-aminobutyric acid A (GABAA) receptor blocker. However, little is known about its effects in animal models. Thus, our goal was to assess the efficacy and safety of a relatively high dose of FLU in the lithium-pilocarpine rat model of status epilepticus (SE). This animal model reproduces many behavioral and neurobiological features of TLE such as short-term brain hypometabolism, severe hippocampal neurodegeneration and inflammation reflected by a marked reactive astrogliosis. METHODS: FLU (100 mg/kg, i.p.) was administered to adult male rats, 150 min before SE induced by pilocarpine. Three days after the SE, brain glucose metabolism was assessed by 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]FDG) positron emission tomography (PET). Markers of hippocampal integrity, neurodegeneration and reactive astrogliosis were also evaluated. RESULTS: FLU neither prevented the occurrence of the SE nor affected brain glucose hypometabolism as assessed by [18F]FDG PET. Regarding the neurohistochemical studies, FLU neither prevented neuronal damage nor hippocampal reactive astrogliosis. On the contrary, FLU increased the mortality rate and negatively affected body weight in the rats that survived the SE. CONCLUSIONS: Our results do not support an acute anticonvulsant effect of a single dose of FLU. Besides, FLU did not show short-term neuroprotective or anti-inflammatory effects in the rat lithium-pilocarpine model of SE. Moreover, at the dose administered, FLU resulted in deleterious effects.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Ratas , Masculino , Animales , Litio/efectos adversos , Pilocarpina/efectos adversos , Ácido Flufenámico/metabolismo , Ácido Flufenámico/farmacología , Ácido Flufenámico/uso terapéutico , Ratas Sprague-Dawley , Fluorodesoxiglucosa F18/metabolismo , Fluorodesoxiglucosa F18/farmacología , Fluorodesoxiglucosa F18/uso terapéutico , Gliosis/metabolismo , Enfermedades Neuroinflamatorias , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Hipocampo/metabolismo , Glucosa/metabolismo , Antiinflamatorios/efectos adversos , Modelos Animales de Enfermedad
4.
Planta Med ; 89(4): 364-376, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36130709

RESUMEN

Numerous preclinical studies provide evidence that curcumin, a polyphenolic phytochemical extracted from Curcuma longa (turmeric) has neuroprotective, anti-inflammatory and antioxidant properties against various neurological disorders. Curcumin neuroprotective effects have been reported in different animal models of epilepsy, but its potential effect attenuating brain glucose hypometabolism, considered as an early marker of epileptogenesis that occurs during the silent period following status epilepticus (SE), still has not been addressed. To this end, we used the lithium-pilocarpine rat model to induce SE. Curcumin was administered orally (300 mg/kg/day, for 17 days). Brain glucose metabolism was evaluated in vivo by 2-deoxy-2-[18F]Fluoro-D-Glucose ([18F]FDG) positron emission tomography (PET). In addition, hippocampal integrity, neurodegeneration, microglia-mediated neuroinflammation, and reactive astrogliosis were evaluated as markers of brain damage. SE resulted in brain glucose hypometabolism accompanied by body weight (BW) loss, hippocampal neuronal damage, and neuroinflammation. Curcumin did not reduce the latency time to the SE onset, nor the mortality rate associated with SE. Nevertheless, it reduced the number of seizures, and in the surviving rats, curcumin protected BW and attenuated the short-term glucose brain hypometabolism as well as the signs of neuronal damage and neuroinflammation induced by the SE. Overall, our results support the potential adaptogen-like effects of curcumin attenuating key features of SE-induced brain damage.


Asunto(s)
Curcumina , Estado Epiléptico , Ratas , Animales , Curcumina/farmacología , Curcumina/metabolismo , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , Encéfalo , Hipocampo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Glucosa/farmacología , Pilocarpina/metabolismo , Pilocarpina/farmacología , Modelos Animales de Enfermedad
5.
Eur J Pharmacol ; 939: 175453, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516936

RESUMEN

Status epilepticus (SE) triggered by lithium-pilocarpine is a model of epileptogenesis widely used in rats, reproducing many of the pathological features of human temporal lobe epilepsy (TLE). After the SE, a silent period takes place that precedes the occurrence of recurrent spontaneous seizures. This latent stage is characterized by brain glucose hypometabolism and intense neuronal damage, especially at the hippocampus. Importantly, interictal hypometabolism in humans is a predictive marker of epileptogenesis, being correlated to the extent and severity of neuronal damage. Among the potential mechanisms underpinning glucose metabolism impairment and the subsequent brain damage, a reduction of cerebral blood flow has been proposed. Accordingly, our goal was to evaluate the potential beneficial effects of naftidrofuryl (25 mg/kg i.p., twice after the insult), a vasodilator drug currently used for circulatory insufficiency-related pathologies. Thus, we measured the effects of naftidrofuryl on the short-term brain hypometabolism and hippocampal damage induced by SE in rats. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) neuroimaging along with various neurohistochemical assays aimed to assess brain damage were performed. SE led to both severe glucose hypometabolism in key epilepsy-related areas and hippocampal neuronal damage. Although naftidrofuryl showed no anticonvulsant properties, it ameliorated the short-term brain hypometabolism induced by pilocarpine. Strikingly, the latter was neither accompanied by neuroprotective nor by anti-inflammatory effects. We suggest that naftidrofuryl, by acutely enhancing brain blood flow around the time of SE improves the brain metabolic state but this effect is not enough to protect from the damage induced by SE.


Asunto(s)
Nafronil , Estado Epiléptico , Humanos , Ratas , Animales , Pilocarpina/farmacología , Litio/farmacología , Nafronil/metabolismo , Nafronil/farmacología , Vasodilatadores/farmacología , Neuroprotección , Glucosa/metabolismo , Modelos Animales de Enfermedad , Encéfalo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Hipocampo , Convulsiones/metabolismo
6.
Front Cell Dev Biol ; 10: 901321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756995

RESUMEN

Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.

7.
Biol Psychol ; 172: 108354, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35577113

RESUMEN

Cognitive flexibility is an ability that allows individuals to integrate external evidence into previous expectancies. Individual differences in this ability were examined using Event-Related Potentials (ERPs), focusing on the fact that new evidence can either confirm or disprove an initial impression. Written scenarios prompted to make a prediction while either confirmatory or disconfirmatory evidence followed. A final sentence presented participants with a statement congruent with the prediction likely to have been formed based on the first statement or a statement rather congruent with corrective new evidence. A Bias Against Disconfirmatory Evidence (BADE) test rated participants in cognitive flexibility. ERPs revealed that whereas individuals overall typically reacted to unexpected endings (a classical N400 effect) within the confirmatory evidence condition, higher cognitive flexibility scores were associated with smaller N400 effects. Furthermore, individuals showed larger P600s for disconfirmatory than confirmatory evidence conditions, regardless of the final target ending. This result indexes reanalysis processes whenever disconfirmatory evidence was present. Regression analysis of BADE scores and ERP effects are presented and discussed. Late ERP components are sensitive enough to detect new evidence integration capabilities and thus provide a good implicit measure of cognitive flexibility.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Comprensión , Femenino , Humanos , Individualidad , Lenguaje , Masculino , Semántica
8.
Front Endocrinol (Lausanne) ; 13: 873301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615716

RESUMEN

Several neurological diseases share pathological alterations, even though they differ in their etiology. Neuroinflammation, altered brain glucose metabolism, oxidative stress, mitochondrial dysfunction and amyloidosis are biological events found in those neurological disorders. Altered insulin-mediated signaling and brain glucose hypometabolism are characteristic signs observed in the brains of patients with certain neurological diseases, but also others such as type 2 diabetes mellitus and vascular diseases. Thus, significant reductions in insulin receptor autophosphorylation and Akt kinase activity, and increased GSK-3 activity and insulin resistance, have been reported in these neurological diseases as contributing to the decline in cognitive function. Supporting this relationship is the fact that nasal and hippocampal insulin administration has been found to improve cognitive function. Additionally, brain glucose hypometabolism precedes the unmistakable clinical manifestations of some of these diseases by years, which may become a useful early biomarker. Deficiencies in the major pathways of oxidative energy metabolism have been reported in patients with several of these neurological diseases, which supports the hypothesis of their metabolic background. This review remarks on the significance of insulin and brain glucose metabolism alterations as keystone common pathogenic substrates for certain neurological diseases, highlighting new potential targets.


Asunto(s)
Encéfalo , Resistencia a la Insulina , Enfermedades del Sistema Nervioso , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Insulina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Transducción de Señal/fisiología
9.
Cells ; 10(8)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34440759

RESUMEN

Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression-a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP-GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Isoenzimas , Transporte de Proteínas , Transducción de Señal
10.
Front Immunol ; 12: 671485, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33981316

RESUMEN

ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV-dependent ECM secretion and its potential relevance for disease, with a focus on TnC.


Asunto(s)
Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Tenascina/metabolismo , Animales , Humanos
11.
J Cell Biol ; 219(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33053168

RESUMEN

The composition and physical properties of the extracellular matrix (ECM) critically influence tumor progression, but the molecular mechanisms underlying ECM layering are poorly understood. Tumor-stroma interaction critically depends on cell communication mediated by exosomes, small vesicles generated within multivesicular bodies (MVBs). We show that caveolin-1 (Cav1) centrally regulates exosome biogenesis and exosomal protein cargo sorting through the control of cholesterol content at the endosomal compartment/MVBs. Quantitative proteomics profiling revealed that Cav1 is required for exosomal sorting of ECM protein cargo subsets, including Tenascin-C (TnC), and for fibroblast-derived exosomes to efficiently deposit ECM and promote tumor invasion. Cav1-driven exosomal ECM deposition not only promotes local stromal remodeling but also the generation of distant ECM-enriched stromal niches in vivo. Cav1 acts as a cholesterol rheostat in MVBs, determining sorting of ECM components into specific exosome pools and thus ECM deposition. This supports a model by which Cav1 is a central regulatory hub for tumor-stroma interactions through a novel exosome-dependent ECM deposition mechanism.


Asunto(s)
Caveolina 1/fisiología , Exosomas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteoma/metabolismo , Tenascina/fisiología , Animales , Fibroblastos/citología , Ratones , Ratones Noqueados
12.
Cell Death Dis ; 11(8): 647, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32811813

RESUMEN

Despite their emerging relevance to fully understand disease pathogenesis, we have as yet a poor understanding as to how biomechanical signals are integrated with specific biochemical pathways to determine cell behaviour. Mesothelial-to-mesenchymal transition (MMT) markers colocalized with TGF-ß1-dependent signaling and yes-associated protein (YAP) activation across biopsies from different pathologies exhibiting peritoneal fibrosis, supporting mechanotransduction as a central driving component of these class of fibrotic lesions and its crosstalk with specific signaling pathways. Transcriptome and proteome profiling of the response of mesothelial cells (MCs) to linear cyclic stretch revealed molecular changes compatible with bona fide MMT, which (i) overlapped with established YAP target gene subsets, and were largely dependent on endogenous TGF-ß1 signaling. Importantly, TGF-ß1 blockade blunts the transcriptional upregulation of these gene signatures, but not the mechanical activation and nuclear translocation of YAP per se. We studied the role therein of caveolin-1 (CAV1), a plasma membrane mechanotransducer. Exposure of CAV1-deficient MCs to cyclic stretch led to a robust upregulation of MMT-related gene programs, which was blunted upon TGF-ß1 inhibition. Conversely, CAV1 depletion enhanced both TGF-ß1 and TGFBRI expression, whereas its re-expression blunted mechanical stretching-induced MMT. CAV1 genetic deficiency exacerbated MMT and adhesion formation in an experimental murine model of peritoneal ischaemic buttons. Taken together, these results support that CAV1-YAP/TAZ fine-tune the fibrotic response through the modulation of MMT, onto which TGF-ß1-dependent signaling coordinately converges. Our findings reveal a cooperation between biomechanical and biochemical signals in the triggering of MMT, representing a novel potential opportunity to intervene mechanically induced disorders coursing with peritoneal fibrosis, such as post-surgical adhesions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Caveolina 1/metabolismo , Fibrosis Peritoneal/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Caveolina 1/fisiología , Caveolinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Diálisis Peritoneal/métodos , Fibrosis Peritoneal/genética , Fibrosis Peritoneal/patología , Peritoneo/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína smad3/metabolismo , Adherencias Tisulares/metabolismo , Factores de Transcripción/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Señalizadoras YAP
13.
Cancer Metastasis Rev ; 39(2): 485-503, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32514892

RESUMEN

Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.


Asunto(s)
Caveolina 1/metabolismo , Neoplasias/metabolismo , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Comunicación Celular/fisiología , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Mecanotransducción Celular , Neoplasias/patología , Receptor Cross-Talk , Células del Estroma/metabolismo , Células del Estroma/patología
14.
Neuroscience ; 409: 101-110, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-31034972

RESUMEN

Glucose metabolism and serotonergic neurotransmission have been reported to play an important role in epileptogenesis. We therefore aimed to use neuroimaging to evaluate potential alterations in serotonin 5-HT1A receptor and glucose metabolism during epileptogenesis in the rat electrical kindling model. To achieve this goal, we performed positron emission tomography (PET) imaging in a rat epileptogenesis model triggered by electrical stimulation of the hippocampus using 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG), a radiolabeled analog of glucose, and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine (18F-MPPF), a radiolabeled 5-HT1A receptor ligand, to evaluate brain metabolism and 5-HT1A receptor functionality. Since the 5-HT1A receptor is also highly expressed in astrocytes, glial fibrillary acidic protein (GFAP) immunofluorescence was performed to detect astrogliosis arising from the kindling procedure once the study was finalized. Lastly, in vitro18F-MPPF autoradiography was performed to evaluate changes in 5HT1A receptor expression. 18F-FDG PET showed reduction of glucose uptake in cortical structures, whereas 18F-MPPF PET revealed an enhancement of tracer binding potential (BPND) in key areas rich in 5-HT1A receptor involved in epilepsy, including septum, hippocampus and entorhinal cortex of kindled animals compared to controls. However, in vitro 5-HT1A receptor autoradiography showed no changes in densitometric signal in any brain region, suggesting that the augmentation in BPND found by PET could be caused by reduction of synaptic serotonin. Importantly, astroglial activation was detected in the hippocampus of kindled rats. Overall, electrical kindling induced hypometabolism, astrogliosis and serotonergic alterations in epilepsy-related regions. Furthermore, the present findings point to 5-HT1A receptor as a valuable epileptogenesis biomarker candidate and a potential therapeutic target.


Asunto(s)
Epilepsia/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Excitación Neurológica/metabolismo , Tomografía de Emisión de Positrones , Serotonina/metabolismo , Animales , Epilepsia/metabolismo , Fluorodesoxiglucosa F18 , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/metabolismo , Hipocampo/metabolismo , Masculino , Neuroimagen , Ratas
15.
Neuropsychologia ; 127: 19-28, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776370

RESUMEN

Several behavioral studies have reported a detrimental effect of emotion on reasoning tasks, either when the content of the reasoning and/or the mood state of the individual are emotionally loaded. However, the neural mechanisms involved in this phenomena remain largely unexplored. In an event-related potentials (ERPs) study, we examined the consequences of an induced mood over the electrophysiological signals obtained while processing logical and illogical categorical conclusions. Prior to performing a syllogism reading task, we aimed to induce, by using short film clips, high arousal negative and positive moods and neutral affective states to participants in three separate recording sessions. Our mood induction procedure was only successful at inducing a highly arousing negative state. Behaviorally, participants committed more errors overall while judging the invalidity versus the validity of illogical and logical conclusions, respectively, but no influences from mood state emerged at this logical validity task. Electrophysiologically and overall a negative going N400 deflection was larger for illogical relative to logical conclusions in a parietal region between 300 and 420 ms. However, further analysis revealed that the logical conclusions were only more expected (smaller N400 amplitudes) in the negative relative to the neutral and the positive sessions, providing support to theoretical views that posit that a more analytic reasoning style might be implemented under a negative mood state. These results provide further electrophysiological evidence of the influence of mood on other cognitive processes, particularly on the anticipation and processing of logical conclusions during online reasoning tasks.


Asunto(s)
Afecto/fisiología , Procesos Mentales/fisiología , Adolescente , Adulto , Nivel de Alerta/fisiología , Mapeo Encefálico , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Humanos , Lógica , Masculino , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiología , Lectura , Adulto Joven
16.
Prog Mol Subcell Biol ; 57: 203-234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30097777

RESUMEN

Caveolae are 60-80 nm invaginated plasma membrane (PM) nanodomains, with a specific lipid and protein composition, which assist and regulate multiple processes in the plasma membrane-ranging from the organization of signalling complexes to the mechanical adaptation to changes in PM tension. However, since their initial descriptions, these structures have additionally been found tightly linked to internalization processes, mechanoadaptation, to the regulation of signalling events and of endosomal trafficking. Here, we review caveolae biology from this perspective, and its implications for cell physiology and disease.


Asunto(s)
Membrana Celular/genética , Endocitosis/genética , Redes y Vías Metabólicas/genética , Transporte de Proteínas/genética , Animales , Caveolas/metabolismo , Membrana Celular/metabolismo , Humanos , Transducción de Señal/genética
17.
Sci Rep ; 8(1): 6476, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29674750

RESUMEN

A correction to this article has been published and is linked from the HTML version of this paper. The error has not been fixed in the paper.

18.
Sci Rep ; 7(1): 16497, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184100

RESUMEN

Inositol Requiring Enzyme-1 (IRE1) is the most conserved transducer of the Unfolded Protein Response (UPR), a surveillance mechanism that ensures homeostasis of the endoplasmic reticulum (ER) in eukaryotes. IRE1 activation orchestrates adaptive responses, including lipid anabolism, metabolic reprogramming, increases in protein folding competency, and ER expansion/remodeling. However, we still know surprisingly little regarding the principles by which this ER transducer is deactivated upon ER stress clearance. Here we show that Protein Kinase B-mechanistic Target of Rapamycin (PKB/AKT-mTOR) signaling controls the dynamics of IRE1 deactivation by regulating ER-mitochondria physical contacts and the autophosphorylation state of IRE1. AKT-mTOR-mediated attenuation of IRE1 activity is important for ER remodelling dynamics and cell survival in the face of recursive, transient ER stress. Our observations suggest that IRE1 attenuation is an integral component of anabolic programmes regulated by AKT-mTOR. We suggest that AKT-mTOR activity is part of a 'timing mechanism' to deactivate IRE1 immediately following engagement of the UPR, in order to limit prolonged IRE1 RNAse activity that could lead to damaging inflammation or apoptosis.

19.
Diabetes ; 66(1): 64-74, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27999108

RESUMEN

Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes.


Asunto(s)
Astrocitos/metabolismo , Glucosa/metabolismo , Animales , Transporte Biológico/fisiología , Transportador de Glucosa de Tipo 1/metabolismo , Glucógeno/metabolismo , Inmunoensayo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ácido Láctico/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Plásmidos , Reacción en Cadena de la Polimerasa , Tomografía de Emisión de Positrones
20.
Methods Mol Biol ; 1487: 163-174, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27924566

RESUMEN

Caveolin1, the main component of caveolae, plays a major role in regulating cell motility, gene expression, and cytoskeleton remodeling downstream of many membrane receptors. Here, we summarize different techniques set up to study changes in cell morphology and cell motility regulated by ERK/caveolin1 interactions during induction of epithelial mesenchymal transition (EMT) in mesothelial cells (MCs).


Asunto(s)
Caveolina 1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transducción de Señal , Animales , Técnicas de Cultivo de Célula , Movimiento Celular , Forma de la Célula , Células Epiteliales/citología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Ratones , Cavidad Peritoneal , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...