Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447793

RESUMEN

Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Transporte Axonal , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/genética , Axones/metabolismo , Axones/patología , Complejo Dinactina/metabolismo , Complejo Dinactina/genética , Dineínas/metabolismo , Endosomas/metabolismo , Endosomas/genética , Lisosomas/metabolismo , Mutación , Variación Genética
2.
Acta Neuropathol Commun ; 10(1): 140, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131329

RESUMEN

Axonal swellings (AS) are one of the neuropathological hallmark of axonal injury in several disorders from trauma to neurodegeneration. Current evidence proposes a role of perturbed Ca2+ homeostasis in AS formation, involving impaired axonal transport and focal distension of the axons. Mechanisms of AS formation, in particular moments following injury, however, remain unknown. Here we show that AS form independently from intra-axonal Ca2+ changes, which are required primarily for the persistence of AS in time. We further show that the majority of axonal proteins undergoing de/phosphorylation immediately following injury belong to the cytoskeleton. This correlates with an increase in the distance of the actin/spectrin periodic rings and with microtubule tracks remodeling within AS. Observed cytoskeletal rearrangements support axonal transport without major interruptions. Our results demonstrate that the earliest axonal response to injury consists in physiological adaptations of axonal structure to preserve function rather than in immediate pathological events signaling axonal destruction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Espectrina , Actinas/metabolismo , Transporte Axonal/fisiología , Axones/patología , Lesiones Traumáticas del Encéfalo/patología , Humanos , Espectrina/metabolismo
3.
Front Cell Neurosci ; 16: 959598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990893

RESUMEN

Axonal homeostasis is maintained by processes that include cytoskeletal regulation, cargo transport, synaptic activity, ionic balance, and energy supply. Several of these processes involve mitochondria to varying degrees. As a transportable powerplant, the mitochondria deliver ATP and Ca2+-buffering capabilities and require fusion/fission to maintain proper functioning. Taking into consideration the long distances that need to be covered by mitochondria in the axons, their transport, distribution, fusion/fission, and health are of cardinal importance. However, axonal homeostasis is disrupted in several disorders of the nervous system, or by traumatic brain injury (TBI), where the external insult is translated into physical forces that damage nervous tissue including axons. The degree of damage varies and can disconnect the axon into two segments and/or generate axonal swellings in addition to cytoskeletal changes, membrane leakage, and changes in ionic composition. Cytoskeletal changes and increased intra-axonal Ca2+ levels are the main factors that challenge mitochondrial homeostasis. On the other hand, a proper function and distribution of mitochondria can determine the recovery or regeneration of the axonal physiological state. Here, we discuss the current knowledge regarding mitochondrial transport, fusion/fission, and Ca2+ regulation under axonal physiological or pathological conditions.

4.
Development ; 147(8)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32265198

RESUMEN

Endocannabinoids (eCB) modulate growth cone dynamics and axonal pathfinding through the stimulation of cannabinoid type-1 receptors (CB1R), the function of which depends on their delivery and precise presentation at the growth cone surface. However, the mechanism involved in the axonal transport of CB1R and its transport role in eCB signaling remains elusive. As mutations in the kinesin-1 molecular motor have been identified in patients with abnormal cortical development and impaired white matter integrity, we studied the defects in axonal pathfinding and fasciculation in mice lacking the kinesin light chain 1 (Klc1-/-) subunit of kinesin-1. Reduced levels of CB1R were found in corticofugal projections and axonal growth cones in Klc1-/- mice. By live-cell imaging of CB1R-eGFP we characterized the axonal transport of CB1R vesicles and described the defects in transport that arise after KLC1 deletion. Cofilin activation, which is necessary for actin dynamics during growth cone remodeling, is impaired in the Klc1-/- cerebral cortex. In addition, Klc1-/- neurons showed expanded growth cones that were unresponsive to CB1R-induced axonal elongation. Together, our data reveal the relevance of kinesin-1 in CB1R axonal transport and in eCB signaling during brain wiring.


Asunto(s)
Transporte Axonal , Axones/metabolismo , Cannabinoides/metabolismo , Cinesinas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Axones/ultraestructura , Corteza Cerebral/metabolismo , Eliminación de Gen , Conos de Crecimiento/metabolismo , Ratones Endogámicos C57BL , Subunidades de Proteína/metabolismo , Tálamo/metabolismo
5.
Int J Dev Neurosci ; 71: 111-121, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30165176

RESUMEN

A decrease in the concentration of oxygen in the blood and tissues (hypoxia) produces important, sometimes irreversible, damages in the central nervous system (CNS) both during development and also postnatally. The present work aims at analyzing the expression of nerve growth factor (NGF) and p75 and the activation of TrkA in response to an acute normobaric hypoxic event and to evaluate the possible protective role of exogenous NGF. The developing chick optic tectum (OT), a recognized model of corticogenesis, was used as experimental system by means of in vivo and in vitro studies. Based on identification of the period of highest sensitivity of developmental programmed cell death (ED15) we show that hypoxia has a mild but reproducible effect that consist of a temporal increase of cell death 6 h after the end of a hypoxic treatment. Cell death was preceded by a significant early increase in the expression of Nerve Growth Factor (NGF) and its membrane receptor p75. In addition, we found a biphasic response of TrkA activation: a decrease during hypoxia followed by an increase -4 h later- that temporally coincide with the interval of NGF overexpression. To test the NGF - NGF receptors role in hypoxic cell death, we quantified, in primary neuronal cultures derived from ED15 OT, the levels of TrkA activation after an acute hypoxic treatment. A significant decline in the level of TrkA activation was observed during hypoxia followed, 24 h later, by significant cell death. Interestingly, this cell death can be reverted if TrkA inactivation during hypoxia is suppressed by the addition of NGF. Our results suggest that TrkA activation may play an important role in the survival of OT neurons subjected to acute hypoxia. The role of TrkA in neuronal survival after injury may be advantageously used for the generation of neuroprotective strategies to improve prenatal insult outcomes.


Asunto(s)
Sistema Nervioso Central , Hipoxia/metabolismo , Hipoxia/patología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Neuroprotección/fisiología , Receptor trkA/metabolismo , Factores de Edad , Animales , Apoptosis/fisiología , Muerte Celular/fisiología , Hipoxia de la Célula/fisiología , Células Cultivadas , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Embrión de Pollo , Embrión no Mamífero , Hipoxia/fisiopatología , Etiquetado Corte-Fin in Situ , Factor de Crecimiento Nervioso/genética , Neuronas/fisiología , Neuroprotección/efectos de los fármacos , Colículos Superiores/citología , Colículos Superiores/embriología , Colículos Superiores/metabolismo , Factores de Tiempo
6.
Dis Model Mech ; 10(9): 1075-1087, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28883016

RESUMEN

The distinctive pathological hallmarks of Parkinson's disease are the progressive death of dopaminergic neurons and the intracellular accumulation of Lewy bodies enriched in α-synuclein protein. Several lines of evidence from the study of sporadic, familial and pharmacologically induced forms of human Parkinson's disease also suggest that mitochondrial dysfunction plays an important role in disease progression. Although many functions have been proposed for α-synuclein, emerging data from human and animal models of Parkinson's disease highlight a role for α-synuclein in the control of neuronal mitochondrial dynamics. Here, we review the α-synuclein structural, biophysical and biochemical properties that influence relevant mitochondrial dynamic processes such as fusion-fission, transport and clearance. Drawing on current evidence, we propose that α-synuclein contributes to the mitochondrial defects that are associated with the pathology of this common and progressive neurodegenerative disease.


Asunto(s)
Dinámicas Mitocondriales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Humanos , Mitofagia , Modelos Biológicos , alfa-Sinucleína/química
7.
J Cell Sci ; 127(Pt 7): 1537-49, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24522182

RESUMEN

Protein degradation by the ubiquitin-proteasome system in neurons depends on the correct delivery of the proteasome complex. In neurodegenerative diseases, aggregation and accumulation of proteins in axons link transport defects with degradation impairments; however, the transport properties of proteasomes remain unknown. Here, using in vivo experiments, we reveal the fast anterograde transport of assembled and functional 26S proteasome complexes. A high-resolution tracking system to follow fluorescent proteasomes revealed three types of motion: actively driven proteasome axonal transport, diffusive behavior in a viscoelastic axonema and proteasome-confined motion. We show that active proteasome transport depends on motor function because knockdown of the KIF5B motor subunit resulted in impairment of the anterograde proteasome flux and the density of segmental velocities. Finally, we reveal that neuronal proteasomes interact with intracellular membranes and identify the coordinated transport of fluorescent proteasomes with synaptic precursor vesicles, Golgi-derived vesicles, lysosomes and mitochondria. Taken together, our results reveal fast axonal transport as a new mechanism of proteasome delivery that depends on membrane cargo 'hitch-hiking' and the function of molecular motors. We further hypothesize that defects in proteasome transport could promote abnormal protein clearance in neurodegenerative diseases.


Asunto(s)
Transporte Axonal/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Axones/metabolismo , Transporte Biológico , Células Cultivadas , Hipocampo/citología , Membranas Intracelulares/metabolismo , Ratones , Ratones Endogámicos C57BL , Nervio Ciático/citología , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...