Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Acta Oncol ; 63: 689-700, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143719

RESUMEN

BACKGROUND AND PURPOSE: The poor delivery of drugs to infiltrating tumor cells contributes to therapeutic failure in glioblastoma. During the early phase of an anti-angiogenic treatment, a remodeling of the tumor vasculature could occur, leading to a more functional vessel network that could enhance drug delivery. However, the restructuration of blood vessels could increase the proportion of normal endothelial cells that could be a barrier for the free diffusion of drugs. The net balance, in favor or not, of a better delivery of compounds during the course of an antiangiogenic treatment remains to be established. This study explored whether cediranib and thalidomide could modulate perfusion and vessel permeability in the brain U87 tumor mouse model. METHODS: The dynamic evolution of the diffusion of agents outside the tumor core using the fluorescent dye Evans Blue in histology and Gd-DOTA using dynamic contrast-enhanced (DCE)-MRI. CD31 labelling of endothelial cells was used to measure the vascular density. RESULTS AND INTERPRETATION: Cediranib and thalidomide effectively reduced tumor size over time. The accessibility of Evans Blue outside the tumor core continuously decreased over time. The vascular density was significantly decreased after treatment while the proportion of normal vessels remained unchanged over time. In contrast to histological studies, DCE-MRI did not tackle any significant change in hemodynamic parameters, in the core or margins of the tumor, whatever the parameter used or the pharmacokinetic model used. While cediranib and thalidomide were effective in decreasing the tumor size, they were ineffective in transiently increasing the delivery of agents in the core and the margins of the tumor.


Asunto(s)
Inhibidores de la Angiogénesis , Neoplasias Encefálicas , Glioblastoma , Quinazolinas , Talidomida , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/irrigación sanguínea , Talidomida/farmacología , Talidomida/uso terapéutico , Animales , Inhibidores de la Angiogénesis/farmacología , Ratones , Quinazolinas/farmacología , Quinazolinas/farmacocinética , Quinazolinas/uso terapéutico , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Imagen por Resonancia Magnética , Ensayos Antitumor por Modelo de Xenoinjerto , Permeabilidad Capilar/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Indoles
2.
Biomedicines ; 12(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791053

RESUMEN

(1) Background: Glioblastoma (GB) presents a formidable challenge in neuro-oncology due to its aggressive nature, limited treatment options, and poor prognosis. The blood-brain barrier (BBB) complicates treatment by hindering drug delivery to the tumor site, particularly to the infiltrative cells in the margin of the tumor, which are mainly responsible for tumor recurrence. Innovative strategies are therefore needed to enhance drug delivery in the margins of the tumor. This study explores whether irradiation can enhance BBB permeability by assessing hemodynamic changes and the distribution of contrast agents in the core and the margins of GB tumors. (2) Methods: Mice grafted with U-87MG cells were exposed to increasing irradiation doses. The distribution of contrast agents and hemodynamic parameters was evaluated using both non-invasive magnetic resonance imaging (MRI) techniques with gadolinium-DOTA as a contrast agent and invasive histological analysis with Evans blue, a fluorescent vascular leakage marker. Diffusion-MRI was also used to assess cytotoxic effects. (3) Results: The histological study revealed a complex dose-dependent effect of irradiation on BBB integrity, with increased vascular leakage at 5 Gy but reduced leakage at higher doses (10 and 15 Gy). However, there was no significant increase in the diffusion of Gd-DOTA outside the tumor area by MRI. (4) Conclusions: The increase in BBB permeability could be an interesting approach to enhance drug delivery in glioblastoma margins for low irradiation doses. In this model, DCE-MRI analysis was of limited value in assessing the BBB opening in glioblastoma after irradiation.

3.
Mater Today Bio ; 26: 101057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660475

RESUMEN

Glioblastoma (GBM) is an aggressive brain tumor, with a highly immunosuppressive tumor immune microenvironment (TIME). In this work, we investigated the use of the STimulator of INterferon Genes (STING) pathway as an effective means to remodel the GBM TIME through the recruitment of both innate and adaptive immune cell populations. Using hyaluronic acid (HA), we developed a novel polymer-drug conjugate of a non-nucleotide STING agonist (MSA2), called HA-MSA2 for the in situ treatment of GBM. In JAWSII cells, HA-MSA2 exerted a greater increase of STING signaling and upregulation of STING-related downstream cyto-/chemokines in immune cells than the free drug. HA-MSA2 also elicited cancer cell-intrinsic immunostimulatory gene expression and promoted immunogenic cell death of GBM cells. In the SB28 GBM model, local delivery of HA-MSA2 induced a delay in tumor growth and a significant extension of survival. The analysis of the TIME showed a profound shift in the GBM immune landscape after HA-MSA2 treatment, with higher infiltration by innate and adaptive immune cells including dendritic, natural killer (NK) and CD8 T cell populations. The therapeutic potential of this novel polymer conjugate warrants further investigation, particularly with other chemo-immunotherapeutics or cancer vaccines as a promising combinatorial therapeutic approach.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37889402

RESUMEN

Glioblastoma (GBM) recurrences appear in most cases around the resection cavity borders and arise from residual GBM cells that cannot be removed by surgery. Here, we propose a novel treatment that combines the advantages of nanomedicine and local drug delivery to target these infiltrating GBM cells. We developed an injectable lipid nanocapsule (LNC)-based formulation loaded with lauroyl-doxorubicin prodrug (DOXC12). Firstly, we demonstrated the efficacy of intratumoral administration of DOXC12 in GL261 GBM-bearing mice, which extended mouse survival. Then, we formulated an injectable hydrogel by mixing the appropriate amount of prodrug with the lipophilic components of LNC. We optimized the hydrogel by incorporating cytidine-C16 (CytC16) to achieve a mechanical stiffness adapted for an application in the brain post-surgery (DOXC12-LNCCL). DOXC12-LNCCL exhibited high DOXC12 encapsulation efficiency (95%) and a size of approximately 60 nm with sustained drug release for over 1 month in vitro. DOXC12-LNCCL exhibited enhanced cytotoxicity compared to free DOXC12 (IC50 of 349 and 86 nM, respectively) on GL261 GBM cells and prevented the growth of GL261 spheroids cultured on organotypic brain slices. In vivo, post-surgical treatment with DOXC12-LNCCL significantly improved the survival of GL261-bearing mice. The combination of this local treatment with the systemic administration of anti-inflammatory drug ibuprofen further delayed the onset of recurrences. In conclusion, our study presents a promising therapeutic approach for the treatment of GBM. By targeting residual GBM cells and reducing the inflammation post-surgery, we present a new strategy to delay the onset of recurrences in the gap period between surgery and standard of care therapy.

5.
J Am Soc Mass Spectrom ; 34(10): 2259-2268, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37712225

RESUMEN

The potential of mass spectrometry imaging, and especially ToF-SIMS 2D and 3D imaging, for submicrometer-scale, label-free molecular localization in biological tissues is undisputable. Nevertheless, sensitivity issues remain, especially when one wants to achieve the best lateral and vertical (nanometer-scale) resolution. In this study, the interest of in situ matrix transfer for tissue analysis with cluster ion beams (Bin+, Arn+) is explored in detail, using a series of six low molecular weight acidic (MALDI) matrices. After estimating the sensitivity enhancements for phosphatidylcholine (PC), an abundant lipid type present in almost any kind of cell membrane, the most promising matrices were softly transferred in situ on mouse brain and human uterine tissue samples using a 10 keV Ar3000+ cluster beam. Signal enhancements up to 1 order of magnitude for intact lipid signals were observed in both tissues under Bi5+ and Ar3000+ bombardment. The main findings of this study lie in the in-depth characterization of uterine tissue samples, the demonstration that the transferred matrices also improve signal efficiency in the negative ion polarity and that they perform as well when using Bin+ and Arn+ primary ions for analysis and imaging.


Asunto(s)
Imagenología Tridimensional , Espectrometría de Masa de Ion Secundario , Ratones , Animales , Humanos , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fosfatidilcolinas , Iones , Encéfalo
6.
Biomater Adv ; 153: 213549, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453243

RESUMEN

The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanocápsulas , Ratones , Humanos , Animales , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Hidrogeles/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Gemcitabina , Sistemas de Liberación de Medicamentos , Lípidos/química , Lípidos/uso terapéutico
7.
Biomedicines ; 11(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509598

RESUMEN

BACKGROUND: While the blood-brain barrier (BBB) is often compromised in glioblastoma (GB), the perfusion and consequent delivery of drugs are highly heterogeneous. Moreover, the accessibility of drugs is largely impaired in the margins of the tumor and for infiltrating cells at the origin of tumor recurrence. In this work, we evaluate the value of methods to assess hemodynamic changes induced by a hyperosmolar shock in the core and the margins of a tumor in a GB model. METHODS: Osmotic shock was induced with an intracarotid infusion of a hypertonic solution of mannitol in mice grafted with U87-MG cells. The distribution of fluorescent dye (Evans blue) within the brain was assessed via histology. Dynamic contrast-enhanced (DCE)-MRI with an injection of Gadolinium-DOTA as the contrast agent was also used to evaluate the effect on hemodynamic parameters and the diffusion of the contrast agent outside of the tumor area. RESULTS: The histological study revealed that the fluorescent dye diffused much more largely outside of the tumor area after osmotic shock than in control tumors. However, the study of tumor hemodynamic parameters via DCE-MRI did not reveal any change in the permeability of the BBB, whatever the studied MRI parameter. CONCLUSIONS: The use of hypertonic mannitol infusion seems to be a promising method to increase the delivery of compounds in the margins of GB. Nevertheless, the DCE-MRI analysis method using gadolinium-DOTA as a contrast agent seems of limited value for determining the efficacy of opening the BBB in GB after osmotic shock.

8.
Drug Deliv Transl Res ; 13(10): 2550-2567, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37040031

RESUMEN

Immunotherapy of advanced melanoma has encountered significant hurdles in terms of clinical efficacy. Here, we designed a clinically translatable hyaluronic acid (HA)-based vaccine delivering a combination of major histocompatibility complex (MHC) class I- and class II-restricted melanoma antigens (TRP2 and Gp100, respectively) conjugated to HA. HA-nanovaccine (HA-TRP2-Gp100 conjugate) exhibited tropism in the lymph nodes and promoted stimulation of the immune response (2.3-fold higher than the HA+TRP2+Gp100). HA-nanovaccine significantly delayed the growth of B16F10 melanoma and extended survival in both the prophylactic and therapeutic settings (median survival of 22 and 27, respectively, vs 17 days of the untreated group). Moreover, mice prophylactically treated with the HA-nanovaccine displayed significantly higher CD8+ and CD4+ T-cell/Treg ratios in both the spleen and tumor at day 16, suggesting that the HA-nanovaccine overcame the immunosuppressive tumor microenvironment. Superior infiltration of active CD4+ and CD8+ T cells was observed at the endpoint. This study supports the conclusion that HA potentiates the effect of a combination of MHC I and MHC II antigens via a potent immune response against melanoma.


Asunto(s)
Ácido Hialurónico , Melanoma , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/prevención & control , Linfocitos T CD8-positivos , Inmunización , Inmunidad , Microambiente Tumoral
9.
Nanomedicine ; 50: 102681, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37105343

RESUMEN

Immunotherapy efficacy as monotherapy is negligible for glioblastoma (GBM). We hypothesized that combining therapeutic vaccination using a plasmid encoding an epitope derived from GBM-associated antigen (pTOP) with local delivery of immunogenic chemotherapy using mitoxantrone-loaded PEGylated PLGA-based nanoparticles (NP-MTX) would improve the survival of GBM-bearing mice by stimulating an antitumor immune response. We first proved that MTX retained its ability to induce cytotoxicity and immunogenic cell death of GBM cells after encapsulation. Intratumoral delivery of MTX or NP-MTX increased the frequency of IFN-γ-secreting CD8 T cells. NP-MTX mixed with free MTX in combination with pTOP DNA vaccine increased the median survival of GL261-bearing mice and increased M1-like macrophages in the brain. The addition of CpG to this combination abolished the survival benefit but led to increased M1 to M2 macrophage ratio and IFN-γ-secreting CD4 T cell frequency. These results highlight the benefits of combination strategies to potentiate immunotherapy and improve GBM outcome.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Vacunas de ADN , Ratones , Animales , Glioblastoma/metabolismo , Vacunas de ADN/uso terapéutico , Muerte Celular Inmunogénica , Línea Celular Tumoral , Inmunoterapia/métodos , Neoplasias Encefálicas/tratamiento farmacológico
10.
Polymers (Basel) ; 15(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36904404

RESUMEN

Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...