Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3118, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600061

RESUMEN

Formation of organo-typical vascular networks requires cross-talk between differentiating parenchymal cells and developing blood vessels. Here we identify a Vegfa driven venous sprouting process involving parenchymal to vein cross-talk regulating venous endothelial Vegfa signaling strength and subsequent formation of a specialized angiogenic cell, prefabricated with an intact lumen and pericyte coverage, termed L-Tip cell. L-Tip cell selection in the venous domain requires genetic interaction between vascular Aplnra and Kdrl in a subset of venous endothelial cells and exposure to parenchymal derived Vegfa and Apelin. Parenchymal Esm1 controls the spatial positioning of venous sprouting by fine-tuning local Vegfa availability. These findings may provide a conceptual framework for understanding how Vegfa generates organo-typical vascular networks based on the selection of competent endothelial cells, induced via spatio-temporal control of endothelial Kdrl signaling strength involving multiple parenchymal derived cues generated in a tissue dependent metabolic context.


Asunto(s)
Angiogénesis , Células Endoteliales , Neovascularización Fisiológica , Células Endoteliales/metabolismo , Neovascularización Fisiológica/genética , Venas
2.
Front Chem ; 9: 688446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262894

RESUMEN

Labeling biomolecules with fluorescent labels is an established tool for structural, biochemical, and biophysical studies; however, it remains underused for small peptides. In this work, an amino acid bearing a 3-hydroxychromone fluorophore, 2-amino-3-(2-(furan-2-yl)-3-hydroxy-4-oxo-4H-chromen-6-yl)propanoic acid (FHC), was incorporated in a known hexameric antimicrobial peptide, cyclo[RRRWFW] (cWFW), in place of aromatic residues. Circular dichroism spectropolarimetry and antibacterial activity measurements demonstrated that the FHC residue perturbs the peptide structure depending on labeling position but does not modify the activity of cWFW significantly. FHC thus can be considered an adequate label for studies of the parent peptide. Several analytical and imaging techniques were used to establish the activity of the obtained labeled cWFW analogues toward animal cells and to study the behavior of the peptides in a multicellular organism. The 3-hydroxychromone fluorophore can undergo excited-state intramolecular proton transfer (ESIPT), resulting in double-band emission from its two tautomeric forms. This feature allowed us to get insights into conformational equilibria of the labeled peptides, localize the cWFW analogues in human cells (HeLa and HEK293) and zebrafish embryos, and assess the polarity of the local environment around the label by confocal fluorescence microscopy. We found that the labeled peptides efficiently penetrated cancerous cells and localized mainly in lipid-containing and/or other nonpolar subcellular compartments. In the zebrafish embryo, the peptides remained in the bloodstream upon injection into the cardinal vein, presumably adhering to lipoproteins and/or microvesicles. They did not diffuse into any tissue to a significant extent during the first 3 h after administration. This study demonstrated the utility of fluorescent labeling by double-emission labels to evaluate biologically active peptides as potential drug candidates in vivo.

3.
Nat Commun ; 11(1): 5319, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087700

RESUMEN

Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Remodelación Vascular/fisiología , Animales , Animales Modificados Genéticamente , Tamaño de la Célula , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Cardiovasculares , Factor de Crecimiento Placentario/genética , Factor de Crecimiento Placentario/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/fisiología , Remodelación Vascular/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/fisiología
4.
PLoS One ; 13(4): e0195374, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641587

RESUMEN

Thyroid hormone (TH) orchestrates amphibian metamorphosis. Thus, this developmental phase is often used to study TH-dependent responses in specific tissues. However, TH signaling appears early in development raising the question of the control of TH availability in specific cell types prior to metamorphosis. TH availability is under strict temporal and tissue-specific control by deiodinases. We examined the expression of the TH-inactivating enzyme, deiodinase type 3 (D3), during early retinal development. To this end we created a Xenopus laevis transgenic line expressing GFP from the Xenopus dio3 promoter region (pdio3) and followed pdio3-GFP expression in pre-metamorphic tadpoles. To validate retinal GFP expression in the transgenic line as a function of dio3 promoter activity, we used in situ hybridization to compare endogenous dio3 expression to reporter-driven GFP activity. Retinal expression of dio3 increased during pre-metamorphosis through stages NF41, 45 and 48. Both sets of results show dio3 to have cell-specific, dynamic expression in the pre-metamorphic retina. At stage NF48, dio3 expression co-localised with markers for photoreceptors, rods, Opsin-S cones and bipolar neurons. In contrast, in post-metamorphic juveniles dio3 expression was reduced and spatially confined to certain photoreceptors and amacrine cells. We compared dio3 expression at stages NF41 and NF48 with TH-dependent transcriptional responses using another transgenic reporter line: THbZIP-GFP and by analyzing the expression of T3-regulated genes in distinct TH availability contexts. At stage NF48, the majority of retinal cells expressing dio3 were negative for T3 signaling. Notably, most ganglion cells were virtually both dio3-free and T3-responsive. The results show that dio3 can reduce TH availability at the cellular scale. Further, a reduction in dio3 expression can trigger fine-tuned T3 action in cell-type specific maturation at the right time, as exemplified here in photoreceptor survival in the pre-metamorphic retina.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Yoduro Peroxidasa/genética , Larva/crecimiento & desarrollo , Larva/genética , Retina/crecimiento & desarrollo , Retina/metabolismo , Animales , Metamorfosis Biológica , Opsinas/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Hormonas Tiroideas/metabolismo , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
5.
Nat Commun ; 8: 13991, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071661

RESUMEN

Formation of organ-specific vasculatures requires cross-talk between developing tissue and specialized endothelial cells. Here we show how developing zebrafish spinal cord neurons coordinate vessel growth through balancing of neuron-derived Vegfaa, with neuronal sFlt1 restricting Vegfaa-Kdrl mediated angiogenesis at the neurovascular interface. Neuron-specific loss of flt1 or increased neuronal vegfaa expression promotes angiogenesis and peri-neural tube vascular network formation. Combining loss of neuronal flt1 with gain of vegfaa promotes sprout invasion into the neural tube. On loss of neuronal flt1, ectopic sprouts emanate from veins involving special angiogenic cell behaviours including nuclear positioning and a molecular signature distinct from primary arterial or secondary venous sprouting. Manipulation of arteriovenous identity or Notch signalling established that ectopic sprouting in flt1 mutants requires venous endothelium. Conceptually, our data suggest that spinal cord vascularization proceeds from veins involving two-tiered regulation of neuronal sFlt1 and Vegfaa via a novel sprouting mode.


Asunto(s)
Neuronas/fisiología , Médula Espinal/embriología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Venas/embriología , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Embrión no Mamífero/citología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Mutación , Neovascularización Fisiológica , Receptores Notch/genética , Receptores Notch/metabolismo , Médula Espinal/irrigación sanguínea , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Venas/metabolismo , Proteínas de Pez Cebra/genética
6.
Biochim Biophys Acta ; 1849(2): 112-21, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24980696

RESUMEN

The essential roles of thyroid hormone (TH) in perinatal brain development have been known for decades. More recently, many of the molecular mechanisms underlying the multiple effects of TH on proliferation, differentiation, migration, synaptogenesis and myelination in the developing nervous system have been elucidated. At the same time data from both epidemiological studies and animal models have revealed that the influence of thyroid signaling on development of the nervous system, extends to all periods of life, from early embryogenesis to neurogenesis in the adult brain. This review focuses on recent insights into the actions of TH during early neurogenesis. A key concept is that, in contrast to the previous ideas that only the unliganded receptor was implicated in these early phases, a critical role of the ligand, T3, is increasingly recognized. These findings are considered in the light of increasing knowledge of cell specific control of T3 availability as a function of deiodinase activity and transporter expression. These requirements for TH in the early stages of neurogenesis take on new relevance given the increasing epidemiological data on adverse effects of TH lack in early pregnancy on children's neurodevelopmental outcome. These ideas lead logically into a discussion on how the actions of TH during the first phases of neurogenesis can be potentially disrupted by gestational iodine lack and/or chemical pollution. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Asunto(s)
Desarrollo Embrionario , Disruptores Endocrinos/toxicidad , Neurogénesis , Hormonas Tiroideas/fisiología , Adulto , Animales , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Femenino , Humanos , Modelos Animales , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Embarazo , Receptores de Hormona Tiroidea/antagonistas & inhibidores , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Hormonas Tiroideas/farmacología
7.
Dev Biol ; 382(1): 246-67, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23891818

RESUMEN

Like most bilaterian animals, the annelid Platynereis dumerilii generates the majority of its body axis in an anterior to posterior temporal progression with new segments added sequentially. This process relies on a posterior subterminal proliferative body region, known as the "segment addition zone" (SAZ). We explored some of the molecular and cellular aspects of posterior elongation in Platynereis, in particular to test the hypothesis that the SAZ contains a specific set of stem cells dedicated to posterior elongation. We cloned and characterized the developmental expression patterns of orthologs of 17 genes known to be involved in the formation, behavior, or maintenance of stem cells in other metazoan models. These genes encode RNA-binding proteins (e.g., tudor, musashi, pumilio) or transcription factors (e.g., myc, id, runx) widely conserved in eumetazoans. Most of these genes are expressed both in the migrating primordial germ cells and in overlapping ring-like patterns in the SAZ, similar to some previously analyzed genes (piwi, vasa). The SAZ patterns are coincident with the expression of proliferation markers cyclin B and PCNA. EdU pulse and chase experiments suggest that new segments are produced through many rounds of divisions from small populations of teloblast-like posterior stem cells. The shared molecular signature between primordial germ cells and posterior stem cells in Platynereis thus corresponds to an ancestral "stemness" program.


Asunto(s)
Anélidos/citología , Anélidos/crecimiento & desarrollo , Células Germinativas/citología , Células Madre/citología , Animales , Anélidos/genética , Movimiento Celular/genética , Proliferación Celular , Ectodermo/citología , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Regeneración , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...