RESUMEN
Objectives: Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is frequently preceded by infections. The underlying pathomechanism, however, remains poorly understood. Here, we present the clinical data of two MOGAD patients with concurrent syphilis infection and investigate the reactivity of patient-derived antibodies to MOG and Treponema pallidum (T. pallidum). Methods: Longitudinal serum samples and soluble immunoglobulins in single B cell supernatants were measured for MOG reactivity by a live cell-based assay. Reactivity against T. pallidum was assessed by enzyme-linked immunosorbent assay. Results: The two patients presented MOGAD and concurrent latent syphilis infection, manifesting as cervical myelitis and unilateral optic neuritis, respectively. The first patient had been living with HIV on antiretroviral therapy, and the second was concomitantly diagnosed with chronic hepatitis B infection. Upon screening of B cell supernatants, we identified reactivity to MOG or T. pallidum. Notably, one B cell showed reactivity to both antigens. Discussion: The coexistence of MOGAD diagnoses and latent syphilis, alongside the identification of antibody reactivity to MOG and T. pallidum, underscores the potential pathomechanistic link between syphilis infection and subsequent autoimmune neuroinflammation. Cross-reactivity between MOG and T. pallidum antibodies remains to be validated on a molecular level, and further characterization of infectious triggers associated with MOGAD is needed.
Asunto(s)
Autoanticuerpos , Glicoproteína Mielina-Oligodendrócito , Sífilis , Treponema pallidum , Humanos , Glicoproteína Mielina-Oligodendrócito/inmunología , Masculino , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Treponema pallidum/inmunología , Sífilis/inmunología , Sífilis/diagnóstico , Sífilis/sangre , Sífilis/complicaciones , Persona de Mediana Edad , Infección Latente/inmunología , Infección Latente/diagnóstico , Adulto , Femenino , Linfocitos B/inmunologíaRESUMEN
OBJECTIVE: To evaluate: (1) the distribution of gray matter (GM) atrophy in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4+NMOSD), and relapsing-remitting multiple sclerosis (RRMS); and (2) the relationship between GM volumes and white matter lesions in various brain regions within each disease. METHODS: A retrospective, multicenter analysis of magnetic resonance imaging data included patients with MOGAD/AQP4+NMOSD/RRMS in non-acute disease stage. Voxel-wise analyses and general linear models were used to evaluate the relevance of regional GM atrophy. For significant results (p < 0.05), volumes of atrophic areas are reported. RESULTS: We studied 135 MOGAD patients, 135 AQP4+NMOSD, 175 RRMS, and 144 healthy controls (HC). Compared with HC, MOGAD showed lower GM volumes in the temporal lobes, deep GM, insula, and cingulate cortex (75.79 cm3); AQP4+NMOSD in the occipital cortex (32.83 cm3); and RRMS diffusely in the GM (260.61 cm3). MOGAD showed more pronounced temporal cortex atrophy than RRMS (6.71 cm3), whereas AQP4+NMOSD displayed greater occipital cortex atrophy than RRMS (19.82 cm3). RRMS demonstrated more pronounced deep GM atrophy in comparison with MOGAD (27.90 cm3) and AQP4+NMOSD (47.04 cm3). In MOGAD, higher periventricular and cortical/juxtacortical lesions were linked to reduced temporal cortex, deep GM, and insula volumes. In RRMS, the diffuse GM atrophy was associated with lesions in all locations. AQP4+NMOSD showed no lesion/GM volume correlation. INTERPRETATION: GM atrophy is more widespread in RRMS compared with the other two conditions. MOGAD primarily affects the temporal cortex, whereas AQP4+NMOSD mainly involves the occipital cortex. In MOGAD and RRMS, lesion-related tract degeneration is associated with atrophy, but this link is absent in AQP4+NMOSD. ANN NEUROL 2024;96:276-288.
Asunto(s)
Acuaporina 4 , Atrofia , Autoanticuerpos , Sustancia Gris , Imagen por Resonancia Magnética , Glicoproteína Mielina-Oligodendrócito , Neuromielitis Óptica , Sustancia Blanca , Humanos , Femenino , Acuaporina 4/inmunología , Neuromielitis Óptica/patología , Neuromielitis Óptica/diagnóstico por imagen , Neuromielitis Óptica/inmunología , Masculino , Glicoproteína Mielina-Oligodendrócito/inmunología , Adulto , Atrofia/patología , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/inmunología , Persona de Mediana Edad , Estudios Retrospectivos , Autoanticuerpos/sangre , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/inmunología , Adulto JovenRESUMEN
Anti-CD20 therapy to deplete B cells is highly efficacious in preventing new white matter lesions in patients with relapsing-remitting multiple sclerosis (RRMS), but its protective capacity against gray matter injury and axonal damage is unclear. In a passive experimental autoimmune encephalomyelitis (EAE) model whereby TH17 cells promote brain leptomeningeal immune cell aggregates, we found that anti-CD20 treatment effectively spared myelin content and prevented myeloid cell activation, oxidative damage, and mitochondrial stress in the subpial gray matter. Anti-CD20 treatment increased B cell survival factor (BAFF) in the serum, cerebrospinal fluid, and leptomeninges of mice with EAE. Although anti-CD20 prevented gray matter demyelination, axonal loss, and neuronal atrophy, co-treatment with anti-BAFF abrogated these benefits. Consistent with the murine studies, we observed that elevated BAFF concentrations after anti-CD20 treatment in patients with RRMS were associated with better clinical outcomes. Moreover, BAFF promoted survival of human neurons in vitro. Together, our data demonstrate that BAFF exerts beneficial functions in MS and EAE in the context of anti-CD20 treatment.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple Recurrente-Remitente , Humanos , Animales , Ratones , Neuroprotección , Encéfalo , Sustancia Gris , Presentación de Antígeno , Atrofia , Encefalomielitis Autoinmune Experimental/tratamiento farmacológicoRESUMEN
Importance: Multiple sclerosis (MS) misdiagnosis remains an important issue in clinical practice. Objective: To quantify the performance of cortical lesions (CLs) and central vein sign (CVS) in distinguishing MS from other conditions showing brain lesions on magnetic resonance imaging (MRI). Design, Setting, and Participants: This was a retrospective, cross-sectional multicenter study, with clinical and MRI data acquired between January 2010 and May 2020. Centralized MRI analysis was conducted between July 2020 and December 2022 by 2 raters blinded to participants' diagnosis. Participants were recruited from 14 European centers and from a multicenter pan-European cohort. Eligible participants had a diagnosis of MS, clinically isolated syndrome (CIS), or non-MS conditions; availability of a brain 3-T MRI scan with at least 1 sequence suitable for CL and CVS assessment; presence of T2-hyperintense white matter lesions (WMLs). A total of 1051 individuals were included with either MS/CIS (n = 599; 386 [64.4%] female; mean [SD] age, 41.5 [12.3] years) or non-MS conditions (including other neuroinflammatory disorders, cerebrovascular disease, migraine, and incidental WMLs in healthy control individuals; n = 452; 302 [66.8%] female; mean [SD] age, 49.2 [14.5] years). Five individuals were excluded due to missing clinical or demographic information (n = 3) or unclear diagnosis (n = 2). Exposures: MS/CIS vs non-MS conditions. Main Outcomes and Measures: Area under the receiver operating characteristic curves (AUCs) were used to explore the diagnostic performance of CLs and the CVS in isolation and in combination; sensitivity, specificity, and accuracy were calculated for various cutoffs. The diagnostic importance of CLs and CVS compared to conventional MRI features (ie, presence of infratentorial, periventricular, and juxtacortical WMLs) was ranked with a random forest model. Results: The presence of CLs and the previously proposed 40% CVS rule had a sensitivity, specificity, and accuracy for MS of 59.0% (95% CI, 55.1-62.8), 93.6% (95% CI, 91.4-95.6), and 73.9% (95% CI, 71.6-76.3) and 78.7% (95% CI, 75.5-82.0), 86.0% (95% CI, 82.1-89.5), and 81.5% (95% CI, 78.9-83.7), respectively. The diagnostic performance of the CVS (AUC, 0.89 [95% CI, 0.86-0.91]) was superior to that of CLs (AUC, 0.77 [95% CI, 0.75-0.80]; P < .001), and was increased when combining the 2 imaging markers (AUC, 0.92 [95% CI, 0.90-0.94]; P = .04); in the random forest model, both CVS and CLs outperformed the presence of infratentorial, periventricular, and juxtacortical WMLs in supporting MS differential diagnosis. Conclusions and Relevance: The findings in this study suggest that CVS and CLs may be valuable tools to increase the accuracy of MS diagnosis.
Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , Esclerosis Múltiple/diagnóstico , Estudios Retrospectivos , Estudios Transversales , Encéfalo/patología , Venas/patología , Enfermedades Desmielinizantes/patología , Imagen por Resonancia Magnética/métodosRESUMEN
This cross-sectional study examines whether proposed myelin oligodendrocyte glycoprotein antibodyassociated disease (MOGAD) diagnostic criteria can exclude other diseases, such as multiple sclerosis, and rely on results of cell-based assays.
Asunto(s)
Autoanticuerpos , Neuromielitis Óptica , Humanos , Glicoproteína Mielina-Oligodendrócito , Estudios Longitudinales , Acuaporina 4RESUMEN
BACKGROUND: As a consequence of SARS-CoV-2 infection various neurocognitive and neuropsychiatric symptoms can appear, which may persist for several months post infection. However, cell type-specific routes of brain infection and underlying mechanisms resulting in neuroglial dysfunction are not well understood. METHODS: Here, we investigated the susceptibility of cells constituting the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP) to SARS-CoV-2 infection using human induced pluripotent stem cell (hiPSC)-derived cellular models and a ChP papilloma-derived epithelial cell line as well as ChP tissue from COVID-19 patients, respectively. RESULTS: We noted a differential infectibility of hiPSC-derived brain microvascular endothelial cells (BMECs) depending on the differentiation method. Extended endothelial culture method (EECM)-BMECs characterized by a complete set of endothelial markers, good barrier properties and a mature immune phenotype were refractory to SARS-CoV-2 infection and did not exhibit an activated phenotype after prolonged SARS-CoV-2 inoculation. In contrast, defined medium method (DMM)-BMECs, characterized by a mixed endothelial and epithelial phenotype and excellent barrier properties were productively infected by SARS-CoV-2 in an ACE2-dependent manner. hiPSC-derived brain pericyte-like cells (BPLCs) lacking ACE2 expression were not susceptible to SARS-CoV-2 infection. Furthermore, the human choroid plexus papilloma-derived epithelial cell line HIBCPP, modeling the BCSFB was productively infected by SARS-CoV-2 preferentially from the basolateral side, facing the blood compartment. Assessment of ChP tissue from COVID-19 patients by RNA in situ hybridization revealed SARS-CoV-2 transcripts in ChP epithelial and ChP stromal cells. CONCLUSIONS: Our study shows that the BCSFB of the ChP rather than the BBB is susceptible to direct SARS-CoV-2 infection. Thus, neuropsychiatric symptoms because of COVID-19 may rather be associated with dysfunction of the BCSFB than the BBB. Future studies should consider a role of the ChP in underlying neuropsychiatric symptoms following SARS-CoV-2 infection.
Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , SARS-CoV-2/metabolismo , Pericitos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Epiteliales/metabolismo , Plexo Coroideo/metabolismoRESUMEN
Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-ß. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.
Asunto(s)
Linfocitos B Reguladores , Humanos , Interleucina-10 , Enfermedades Neuroinflamatorias , Inflamación , Diferenciación CelularRESUMEN
Importance: Differential diagnosis of patients with seronegative demyelinating central nervous system (CNS) disease is challenging. In this regard, evidence suggests that immunoglobulin (Ig) A plays a role in the pathogenesis of different autoimmune diseases. Yet little is known about the presence and clinical relevance of IgA antibodies against myelin oligodendrocyte glycoprotein (MOG) in CNS demyelination. Objective: To investigate the frequency of MOG-IgA and associated clinical features in patients with demyelinating CNS disease and healthy controls. Design, Setting, and Participants: This longitudinal study comprised 1 discovery and 1 confirmation cohort derived from 5 centers. Participants included patients with suspected or confirmed demyelinating diseases and healthy controls. MOG-IgA, MOG-IgG, and MOG-IgM were measured in serum samples and cerebrospinal fluid (CSF) of patients, who were assessed from September 2012 to April 2022. Main Outcomes and Measures: Frequency and clinical features of patients who were seropositive for MOG-IgA and double-seronegative for aquaporin 4 (AQP4) IgG and MOG-IgG. Results: After the exclusion of 5 participants with coexisting AQP4-IgG and MOG-IgA, MOG-IgG, and/or MOG-IgM, 1339 patients and 110 healthy controls were included; the median follow-up time was 39 months (range, 0-227 months). Of included patients with isolated MOG-IgA, 11 of 18 were female (61%), and the median age was 31.5 years (range, 3-76 years). Among patients double-seronegative for AQP4-IgG and MOG-IgG (1126/1339; 84%), isolated MOG-IgA was identified in 3 of 50 patients (6%) with neuromyelitis optica spectrum disorder, 5 of 228 patients (2%) with other CNS demyelinating diseases, and 10 of 848 patients (1%) with multiple sclerosis but in none of the healthy controls (0/110). The most common disease manifestation in patients seropositive for isolated MOG-IgA was myelitis (11/17 [65%]), followed by more frequent brainstem syndrome (7/16 [44%] vs 14/75 [19%], respectively; P = .048), and infrequent manifestation of optic neuritis (4/15 [27%] vs 46/73 [63%], respectively; P = .02) vs patients with MOG-IgG. Among patients fulfilling 2017 McDonald criteria for multiple sclerosis, MOG-IgA was associated with less frequent CSF-specific oligoclonal bands (4/9 [44%] vs 325/351 [93%], respectively; P < .001) vs patients with multiple sclerosis who were MOG-IgG/IgA seronegative. Further, most patients with isolated MOG-IgA presented clinical attacks after recent infection or vaccination (7/11 [64%]). Conclusion and Relevance: In this study, MOG-specific IgA was identified in a subgroup of patients who were double-seronegative for AQP4-/MOG-IgG, suggesting that MOG-IgA may be a novel diagnostic biomarker for patients with CNS demyelination.
Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Femenino , Masculino , Glicoproteína Mielina-Oligodendrócito , Estudios Longitudinales , Neuromielitis Óptica/diagnóstico , Acuaporina 4 , Tronco Encefálico , Autoanticuerpos , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina MRESUMEN
B cell depletion is becoming a preferred long-term treatment even in early multiple sclerosis, but concerns about the risks of impaired immune competence persist. In their observational study Schuckmann et al. thoroughly assessed the impact of B cell-adapted extended interval dosing on immunoglobulin levels as a surrogate of adverse immunosuppressive effects.
Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/terapia , Linfocitos B , Inmunosupresores/uso terapéuticoRESUMEN
BACKGROUND: There is an urgent need to better understand the mechanisms underlying acute and long-term neurological symptoms after COVID-19. Neuropathological studies can contribute to a better understanding of some of these mechanisms. METHODS: We conducted a detailed postmortem neuropathological analysis of 32 patients who died due to COVID-19 during 2020 and 2021 in Austria. RESULTS: All cases showed diffuse white matter damage with a diffuse microglial activation of a variable severity, including one case of hemorrhagic leukoencephalopathy. Some cases revealed mild inflammatory changes, including olfactory neuritis (25%), nodular brainstem encephalitis (31%), and cranial nerve neuritis (6%), which were similar to those observed in non-COVID-19 severely ill patients. One previously immunosuppressed patient developed acute herpes simplex encephalitis. Acute vascular pathologies (acute infarcts 22%, vascular thrombosis 12%, diffuse hypoxic-ischemic brain damage 40%) and pre-existing small vessel diseases (34%) were frequent findings. Moreover, silent neurodegenerative pathologies in elderly persons were common (AD neuropathologic changes 32%, age-related neuronal and glial tau pathologies 22%, Lewy bodies 9%, argyrophilic grain disease 12.5%, TDP43 pathology 6%). CONCLUSIONS: Our results support some previous neuropathological findings of apparently multifactorial and most likely indirect brain damage in the context of SARS-CoV-2 infection rather than virus-specific damage, and they are in line with the recent experimental data on SARS-CoV-2-related diffuse white matter damage, microglial activation, and cytokine release.
Asunto(s)
COVID-19 , Disfunción Cognitiva , Enfermedades del Sistema Nervioso , Neuritis , Sustancia Blanca , Humanos , Anciano , COVID-19/complicaciones , SARS-CoV-2 , Sustancia Blanca/patología , Cobertura de Afecciones Preexistentes , Enfermedades del Sistema Nervioso/patología , Disfunción Cognitiva/etiologíaRESUMEN
BACKGROUND: Data on the humoral vaccine response in patients on anti-interleukin-6 (IL-6) receptor therapy remain scarce. OBJECTIVE: The main objective of our study was to investigate the humoral response after vaccination against SARS-CoV-2 in neuromyelitis optica spectrum disorder (NMOSD)/myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) patients treated with anti-IL-6 receptor therapy. Secondarily, we analyzed relapse activity timely associated with vaccination. METHODS: In this retrospective cross-sectional multicenter study, we included 15 healthy controls and 48 adult NMOSD/MOGAD patients without previous COVID-19 infection. SARS-CoV-2 spike protein antibody titers during anti-IL-6 receptor therapy were compared to anti-CD20 antibody therapy, oral immunosuppressants, and to nonimmunosuppressed individuals. RESULTS: We observed 100% seroconversion in the anti-IL-6 receptor treatment group. Titers of SARS-CoV-2 spike protein antibodies were lower compared to healthy controls (720 vs 2500 binding antibody units (BAU)/mL, p = 0.004), but higher than in the anti-CD20 (720 vs 0.4 BAU/mL, p < 0.001) and comparable to the oral immunosuppressant group (720 vs 795 BAU/mL, p = 1.0). We found no association between mRNA-based vaccines and relapse activity in patients with or without immunotherapy. CONCLUSIONS: Despite being lower than in healthy controls, the humoral vaccine response during anti-IL-6 receptor therapy was evident in all patients and substantially stronger compared to anti-CD20 treatment. No relevant disease activity occurred after mRNA vaccination against SARS-CoV-2.
Asunto(s)
COVID-19 , Neuromielitis Óptica , Humanos , Vacunas contra la COVID-19 , Estudios Transversales , Neuromielitis Óptica/terapia , Estudios Retrospectivos , SARS-CoV-2 , Inmunoterapia , Anticuerpos , Inmunosupresores/uso terapéutico , ARN Mensajero , Recurrencia , Anticuerpos Antivirales , VacunaciónRESUMEN
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Epilepsia , Síndromes Epilépticos , Humanos , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Convulsiones/diagnóstico , Encefalitis/diagnóstico , Encefalitis/terapia , Encefalitis/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/diagnósticoRESUMEN
Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Humanos , Nódulos de Ranvier/metabolismo , Potasio/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismoRESUMEN
Mounting evidence points towards a pivotal role of gut microbiota in multiple sclerosis (MS) pathophysiology. Yet, whether disease-modifying treatments alter microbiota composition and whether microbiota shape treatment response and side-effects remain unclear. In this prospective observational pilot study, we assessed the effect of dimethyl fumarate (DMF) on gut microbiota and on host/microbial metabolomics in a cohort of 20 MS patients. Combining state-of-the-art microbial sequencing, metabolome mass spectrometry, and computational analysis, we identified longitudinal changes in gut microbiota composition under DMF-treatment and an increase in citric acid cycle metabolites. Notably, DMF-induced lymphopenia, a clinically relevant safety concern, was correlated with distinct baseline microbiome signatures in MS patients. We identified gastrointestinal microbiota as a key therapeutic target for metabolic properties of DMF. By characterizing gut microbial composition as a candidate risk factor for DMF-induced lymphopenia, we provide novel insights into the role of microbiota in mediating clinical side-effects.
Asunto(s)
Microbioma Gastrointestinal , Linfopenia , Esclerosis Múltiple , Humanos , Dimetilfumarato/efectos adversos , Esclerosis Múltiple/tratamiento farmacológico , Estudios Prospectivos , Linfopenia/inducido químicamente , Factores de RiesgoRESUMEN
Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.
Asunto(s)
COVID-19 , Humanos , Estudios Transversales , SARS-CoV-2 , Autoinmunidad , Estudios Prospectivos , Síndrome Post Agudo de COVID-19RESUMEN
People living with multiple sclerosis (MS) experience episodic CNS white matter lesions instigated by autoreactive T cells. With age, patients with MS show evidence of gray matter demyelination and experience devastating nonremitting symptomology. What drives progression is unclear and studying this has been hampered by the lack of suitable animal models. Here, we show that passive experimental autoimmune encephalomyelitis (EAE) induced by an adoptive transfer of young Th17 cells induced a nonremitting clinical phenotype that was associated with persistent leptomeningeal inflammation and cortical pathology in old, but not young, SJL/J mice. Although the quantity and quality of T cells did not differ in the brains of old versus young EAE mice, an increase in neutrophils and a decrease in B cells were observed in the brains of old mice. Neutrophils were also found in the leptomeninges of a subset of progressive MS patient brains that showed evidence of leptomeningeal inflammation and subpial cortical demyelination. Taken together, our data show that while Th17 cells initiate CNS inflammation, subsequent clinical symptoms and gray matter pathology are dictated by age and associated with other immune cells, such as neutrophils.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Sustancia Gris/patología , Humanos , Inflamación , Ratones , Neutrófilos/patologíaRESUMEN
BACKGROUND AND OBJECTIVES: The choroid plexus has been shown to play a crucial role in CNS inflammation. Previous studies found larger choroid plexus in multiple sclerosis (MS) compared with healthy controls. However, it is not clear whether the choroid plexus is similarly involved in MS and in neuromyelitis optica spectrum disorder (NMOSD). Thus, the aim of this study was to compare the choroid plexus volume in MS and NMOSD. METHODS: In this retrospective, cross-sectional study, patients were included by convenience sampling from 4 international MS centers. The choroid plexus of the lateral ventricles was segmented fully automatically on T1-weighted MRI sequences using a deep learning algorithm (Multi-Dimensional Gated Recurrent Units). Uni- and multivariable linear models were applied to investigate associations between the choroid plexus volume, clinically meaningful disease characteristics, and MRI parameters. RESULTS: We studied 180 patients with MS and 98 patients with NMOSD. In total, 94 healthy individuals and 47 patients with migraine served as controls. The choroid plexus volume was larger in MS (median 1,690 µL, interquartile range [IQR] 648 µL) than in NMOSD (median 1,403 µL, IQR 510 µL), healthy individuals (median 1,533 µL, IQR 570 µL), and patients with migraine (median 1,404 µL, IQR 524 µL; all p < 0.001), whereas there was no difference between NMOSD, migraine, and healthy controls. This was also true when adjusted for age, sex, and the intracranial volume. In contrast to NMOSD, the choroid plexus volume in MS was associated with the number of T2-weighted lesions in a linear model adjusted for age, sex, total intracranial volume, disease duration, relapses in the year before MRI, disease course, Expanded Disability Status Scale score, disease-modifying treatment, and treatment duration (beta 4.4; 95% CI 0.78-8.1; p = 0.018). DISCUSSION: This study supports an involvement of the choroid plexus in MS in contrast to NMOSD and provides clues to better understand the respective pathogenesis.
Asunto(s)
Trastornos Migrañosos , Esclerosis Múltiple , Neuromielitis Óptica , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/patología , Estudios Transversales , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Neuromielitis Óptica/diagnóstico por imagen , Neuromielitis Óptica/patología , Estudios RetrospectivosRESUMEN
Neurological symptoms and varying levels of central nervous system (CNS) immunopathology have been described in COVID-19. Recent reports have suggested an increased level of innate immune activation associated with CNS border areas, as well as with a compartmentalized cytokine response and a dysregulated, autoreactive cerebrospinal fluid (CSF) immune profile. However, it remains contested whether these changes reflect bystander effects of systemic inflammation or relate to CNS-specific viral infection. We summarize some of the key findings pertaining to this ongoing debate and highlight directions for future investigation.