Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 89, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955821

RESUMEN

We investigated the food-dependent growth and thermal response of the freshwater ciliate Colpidium kleini using numerical response (NR) experiments. This bacterivorous ciliate occurs in lotic water and the pelagial of lakes and ponds. The C. kleini strain used in this work was isolated from a small alpine lake and identified by combining detailed morphological inspections with molecular phylogeny. Specific growth rates (rmax) were measured from 5 to 21 °C. The ciliate did not survive at 22 °C. The threshold bacterial food levels (0.3 - 2.2 × 106 bacterial cells mL-1) matched the bacterial abundance in the alpine lake from which C. kleini was isolated. The food threshold was notably lower than previously reported for C. kleini and two other Colpidium species. The threshold was similar to levels reported for oligotrich and choreotrich ciliates if expressed in terms of bacterial biomass (0.05 - 0.43 mg C L-1). From the NR results, we calculated physiological mortality rates at zero food concentration. The mean mortality (0.55 ± 0.17 d-1) of C. kleini was close to the mean estimate obtained for other planktonic ciliates that do not encyst. We used the data obtained by the NR experiments to fit a thermal performance curve (TPC). The TPC yielded a temperature optimum at 17.3 °C for C. kleini, a maximum upper thermal tolerance limit of 21.9 °C, and a thermal safety margin of 4.6 °C. We demonstrated that combining NR with TPC analysis is a powerful tool to predict better a species' fitness in response to temperature and food.


Asunto(s)
Cilióforos , Cilióforos/fisiología , Cilióforos/crecimiento & desarrollo , Cilióforos/clasificación , Cilióforos/aislamiento & purificación , Lagos/microbiología , Lagos/parasitología , Temperatura , Filogenia , Extinción Biológica , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
2.
Ann Bot ; 134(3): 385-400, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38832756

RESUMEN

The Streptophyta emerged about a billion years ago. Nowadays, this branch of the green lineage is most famous for one of its clades, the land plants (Embryophyta). Although Embryophyta make up the major share of species numbers in Streptophyta, there is a diversity of probably >5000 species of streptophyte algae that form a paraphyletic grade next to land plants. Here, we focus on the deep divergences that gave rise to the diversity of streptophytes, hence particularly on the streptophyte algae. Phylogenomic efforts have not only clarified the position of streptophyte algae relative to land plants, but recent efforts have also begun to unravel the relationships and major radiations within streptophyte algal diversity. We illustrate how new phylogenomic perspectives have changed our view on the evolutionary emergence of key traits, such as intricate signalling networks that are intertwined with multicellular growth and the chemodiverse hotbed from which they emerged. These traits are key for the biology of land plants but were bequeathed from their algal progenitors.


Asunto(s)
Evolución Biológica , Filogenia , Streptophyta , Streptophyta/genética , Streptophyta/fisiología
3.
Microorganisms ; 12(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38792698

RESUMEN

Coccoid Ulvophyceae are often overlooked despite their wide distribution. They occur as epiphytes on marine seaweeds or grow on stones or on shells of mussels and corals. Most of the species are not easy to identify based solely on morphology. However, they form two groups based on the flagellated cells during asexual reproduction. The biflagellated coccoids are monophyletic and represent the genus Sykidion (Sykidiales). In contrast, the quadriflagellated taxa are polyphyletic and belong to different genera and orders. The newly investigated strains NIES-1838 and NIES-1839, originally identified as Halochlorococcum, belong to the genus Chlorocystis (C. john-westii) among the order Chlorocystidales. The unidentified strain CCMP 1293 had almost an identical SSU and ITS-2 sequence to Symbiochlorum hainanense (Ignatiales) but showed morphological differences (single chloroplast, quadriflagellated zoospores) compared with the original description of this species (multiple chloroplasts, aplanospores). Surprisingly, the strain SAG 2662 (= ULVO-129), together with the published sequence of MBIC 10461, formed a new monophyletic lineage among the Ulvophyceae, which is highly supported in all of the bootstrap and Bayesian analyses and approximately unbiased tests of user-defined trees. This strain is characterized by a spherical morphology and also form quadriflagellated zoospores, have a unique ITS-2 barcode, and can tolerate a high variation of salinities. Considering our results, we emend the diagnosis of Symbiochlorum and propose the new genus Solotvynia among the new order Solotvyniales.

4.
Curr Biol ; 34(3): 670-681.e7, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244543

RESUMEN

Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.


Asunto(s)
Embryophyta , Streptophyta , Filogenia , Evolución Biológica , Plantas/genética , Embryophyta/genética
5.
Plant Direct ; 6(10): e454, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36311903

RESUMEN

The loss of photosynthesis in land plants and algae is typically associated with parasitism but can also occur in free-living species, including chlamydomonadalean green algae. The plastid genomes (ptDNAs) of colorless chlamydomonadaleans are surprisingly diverse in architecture, including highly expanded forms (Polytoma uvella and Leontynka pallida) as well as outright genome loss (Polytomella species). Here, we explore the ptDNAs of Hyalomonas (Hm.) oviformis (SAG 62-27; formerly known as Polytoma oviforme) and Hyalogonium (Hg.) fusiforme (SAG 62-1c), each representing independent losses of photosynthesis within the Chlamydophyceae. The Hm. oviformis ptDNA is moderately sized (132 kb) with a reduced gene complement (but still encoding the ATPase subunits) and is in fact smaller than that of its photosynthetic relative Hyalomonas chlamydogama SAG 11-48b (198.3 kb). The Hg. fusiforme plastome, however, is the largest yet observed in nonphotosynthetic plants or algae (~463 kb) and has a coding repertoire that is almost identical to that of its photosynthetic relatives in the genus Chlorogonium. Furthermore, the ptDNA of Hg. fusiforme shows no clear evidence of pseudogenization, which is consistent with our analyses showing that Hg. fusiforme is the nonphotosynthetic lineage of most recent origin among known colorless Chlamydophyceae. Together, these new ptDNAs clearly show that, in contrast to parasitic algae, plastid genome compaction is not an obligatory route following the loss of photosynthesis in free-living algae, and that certain chlamydomonadalean algae have a remarkable propensity for genomic expansion, which can persist regardless of the trophic strategy.

6.
Sci Rep ; 12(1): 18089, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302793

RESUMEN

Paramecium bursaria is a mixotrophic ciliate species, which is common in stagnant and slow-flowing, nutrient-rich waters. It is usually found living in symbiosis with zoochlorellae (green algae) of the genera Chlorella or Micractinium. We investigated P. bursaria isolates from around the world, some of which have already been extensively studied in various laboratories, but whose morphological and genetic identity has not yet been completely clarified. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed five highly supported lineages, which corresponded to the syngen and most likely to the biological species assignment. These syngens R1-R5 could also be distinguished by unique synapomorphies in the secondary structures of the SSU and the ITS. Considering these synapomorphies, we could clearly assign the existing GenBank entries of P. bursaria to specific syngens. In addition, we discovered synapomorphies at amino acids of the COI gene for the identification of the syngens. Using the metadata of these entries, most syngens showed a worldwide distribution, however, the syngens R1 and R5 were only found in Europe. From morphology, the syngens did not show any significant deviations. The investigated strains had either Chlorella variabilis, Chlorella vulgaris or Micractinium conductrix as endosymbionts.


Asunto(s)
Alveolados , Chlorella vulgaris , Chlorophyta , Cilióforos , Oligohimenóforos , Paramecium , Paramecium/genética , Filogenia , Chlorophyta/genética , Simbiosis/genética
7.
Proc Biol Sci ; 288(1963): 20212168, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34814752

RESUMEN

Streptophytes are one of the major groups of the green lineage (Chloroplastida or Viridiplantae). During one billion years of evolution, streptophytes have radiated into an astounding diversity of uni- and multicellular green algae as well as land plants. Most divergent from land plants is a clade formed by Mesostigmatophyceae, Spirotaenia spp. and Chlorokybophyceae. All three lineages are species-poor and the Chlorokybophyceae consist of a single described species, Chlorokybus atmophyticus. In this study, we used phylogenomic analyses to shed light into the diversity within Chlorokybus using a sampling of isolates across its known distribution. We uncovered a consistent deep genetic structure within the Chlorokybus isolates, which prompted us to formally extend the Chlorokybophyceae by describing four new species. Gene expression differences among Chlorokybus species suggest certain constitutive variability that might influence their response to environmental factors. Failure to account for this diversity can hamper comparative genomic studies aiming to understand the evolution of stress response across streptophytes. Our data highlight that future studies on the evolution of plant form and function can tap into an unknown diversity at key deep branches of the streptophytes.


Asunto(s)
Chlorophyta , Embryophyta , Chlorophyta/genética , Embryophyta/genética , Evolución Molecular , Genoma , Filogenia , Plantas/genética
8.
Microorganisms ; 9(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34442668

RESUMEN

Most marine coccoid and sarcinoid green algal species have traditionally been placed within genera dominated by species from freshwater or soil habitats. For example, the genera Chlorocystis and Halochlorococcum contain exclusively marine species; however, their familial and ordinal affinities are unclear. They are characterized by a vegetative cell with lobated or reticulated chloroplast, formation of quadriflagellated zoospores and living epi- or endophytically within benthic macroalgae. They were integrated into the family Chlorochytriaceae which embraces all coccoid green algae with epi- or endophytic life phases. Later, they were excluded from the family of Chlorococcales based on studies of their life histories in culture, and transferred to their newly described order, Chlorocystidales of the Ulvophyceae. Both genera form a "Codiolum"-stage that serves as the unicellular sporophyte in their life cycles. Phylogenetic analyses of SSU and ITS rDNA sequences confirmed that these coccoid taxa belong to the Chlorocystidales, together with the sarcinoid genus Desmochloris. The biflagellated coccoid strains were members of the genus Sykidion, which represented its own order, Sykidiales, among the Ulvophyceae. Considering these results and the usage of the ITS-2/CBC approach revealed three species of Desmochloris, six of Chlorocystis, and three of Sykidion. Three new species and several new combinations were proposed.

9.
Microorganisms ; 9(3)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800927

RESUMEN

Network analyses of biological communities allow for identifying potential consequences of climate change on the resilience of ecosystems and their robustness to resist stressors. Using DNA metabarcoding datasets from a three-year-sampling (73 samples), we constructed the protistan plankton co-occurrence network of Lake Zurich, a model lake ecosystem subjected to climate change. Despite several documentations of dramatic lake warming in Lake Zurich, our study provides an unprecedented perspective by linking changes in biotic association patterns to climate stress. Water temperature belonged to the strongest environmental parameters splitting the data into two distinct seasonal networks (October-April; May-September). The expected ecological niche of phytoplankton, weakened through nutrient depletion because of permanent thermal stratification and through parasitic fungi, was occupied by the cyanobacterium Planktothrix rubescens and mixotrophic nanoflagellates. Instead of phytoplankton, bacteria and nanoflagellates were the main prey organisms associated with key predators (ciliates), which contrasts traditional views of biological associations in lake plankton. In a species extinction scenario, the warm season network emerged as more vulnerable than the cold season network, indicating a time-lagged effect of warmer winter temperatures on the communities. We conclude that climate stressors compromise lake ecosystem robustness and resilience through species replacement, richness differences, and succession as indicated by key network properties.

10.
Sci Rep ; 11(1): 5916, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723272

RESUMEN

Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of different Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one-year cycle both from morphospecies counts and high-throughput sequencing (HTS), and, (v) proof of the co-occurrence of Coleps and their endosymbiotic algae from HTS-based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in different depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the different lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae). Our results suggest a future revision of the species concept of the genus Coleps.


Asunto(s)
Cilióforos/clasificación , Cilióforos/genética , Agua/parasitología , Biodiversidad , Variación Biológica Poblacional , Cilióforos/citología , ADN Protozoario/química , ADN Protozoario/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Ecología , Ecosistema , Lagos , Conformación de Ácido Nucleico , Fenotipo , Filogenia , Estaciones del Año , Simbiosis
11.
Front Microbiol ; 12: 787290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185817

RESUMEN

Species of the ciliate genus Urotricha are key players in freshwater plankton communities. In the pelagial of lakes, about 20 urotrich species occur throughout an annual cycle, some of which play a pivotal role in aquatic food webs. For example, during the phytoplankton spring bloom, they consume a remarkable proportion of the algal production. In ecological studies, urotrich ciliates are usually merely identified to genus rank and grouped into size classes. This is unsatisfying considering the distinct autecological properties of individual species and their specific spatial and temporal distribution patterns. As a basis for future research, we characterized in detail four common urotrich morphotypes, i.e., specimens identified as U. furcata and tentatively as U. agilis, U. pseudofurcata, and U. castalia, using state-of-the-art methods. We used an integrative polyphasic approach, in which morphological studies (in vivo observation, silver staining methods, scanning electron microscopy) were linked with a molecular approach exploiting four different gene fragments as taxonomic DNA barcodes with different resolution potential (SSU rDNA, ITS-1, ITS-2, hypervariable V4 and V9 regions of the SSU rDNA). We shed light on the diversity of urotrich ciliates as well as on their global distribution patterns, and annual cycles. Additionally, we coupled individual species occurrences and environmental parameters, and subsequently modeled the distribution and occurrence, using logistic regressions. Furthermore, for one strain putatively identified as U. castalia, we ascertained the optimal cultivation media and food preferences. Thereby, our comprehensive view on these important freshwater ciliates that frequently occur in environmental high throughput sequencing datasets worldwide will allow future studies to better exploit protistan plankton data from lakes.

12.
Mol Ecol ; 30(4): 1053-1071, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33306859

RESUMEN

Microbial planktonic communities are the basis of food webs in aquatic ecosystems since they contribute substantially to primary production and nutrient recycling. Network analyses of DNA metabarcoding data sets emerged as a powerful tool to untangle the complex ecological relationships among the key players in food webs. In this study, we evaluated co-occurrence networks constructed from time-series metabarcoding data sets (12 months, biweekly sampling) of protistan plankton communities in surface layers (epilimnion) and bottom waters (hypolimnion) of two temperate deep lakes, Lake Mondsee (Austria) and Lake Zurich (Switzerland). Lake Zurich plankton communities were less tightly connected, more fragmented and had a higher susceptibility to a species extinction scenario compared to Lake Mondsee communities. We interpret these results as a lower robustness of Lake Zurich protistan plankton to environmental stressors, especially stressors resulting from climate change. In all networks, the phylum Ciliophora contributed the highest number of nodes, among them several in key positions of the networks. Associations in ciliate-specific subnetworks resembled autecological species-specific traits that indicate adaptions to specific environmental conditions. We demonstrate the strength of co-occurrence network analyses to deepen our understanding of plankton community dynamics in lakes and indicate biotic relationships, which resulted in new hypotheses that may guide future research in climate-stressed ecosystems.


Asunto(s)
Cadena Alimentaria , Lagos , Austria , Ecosistema , Plancton/genética , Suiza
13.
Symbiosis ; 82(3): 175-188, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328698

RESUMEN

Associations of freshwater sponges with coccoid green algae have been known for a long time. Two types of coccoid green algae, which are commonly assigned as zoochlorellae, are recognized by morphology: small coccoids (< 3 µm) without pyrenoids and larger Chlorella-like algae (4-6 µm) with pyrenoids. Despite their wide distribution in some freshwater sponges, these green algae were never studied using a combined analysis of morphology and molecular phylogeny. We investigated several endosymbiotic strains isolated from different Spongilla species, which were available in culture collections. Phylogenetic analyses of SSU and ITS rDNA sequences revealed that the strain SAG 211-40a is a member of the Chlorellaceae and represents a new species of the newly erected genus Lewiniosphaera, L symbiontica. The phylogenetic position was confirmed by morphology and ITS-2 barcode. The endosymbionts without pyrenoid were identified as Choricystis parasitica by morphology and phylogenetic analyses. The comparison with free-living strains revealed the recognition of two new Choricystis species, C. krienitzii and C. limnetica, which were confirmed by molecular signatures in V9 region of SSU rDNA and ITS-2 barcode.

14.
Extremophiles ; 23(5): 573-586, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31227902

RESUMEN

Biological soil crusts of extreme habitats (semi-deserts and deserts) are dominated by cyanobacteria and microalgae. The most abundant taxa are green algae belonging to the classes Chlorophyceae and Trebouxiophyceae. Specimens with sarcinoid-like morphology (cells arranged in packages) represent one group of these microalgae. The genus Pleurastrosarcina consists of two species, which were originally described as Chlorosarcina (P. brevispinosa and P. longispinosa). Both species are exclusively found from arid soils. However, these species were only reported few times and probably overlooked especially if no akinetes were present. During studying soil samples collected from different regions of the Atacama desert (Chile), we isolated two strains, which were morphologically similar to both Pleurastrosarcina species. The phylogenetic analyses confirmed that they belong to this genus. The ITS-2/CBC approach revealed that both new isolates represent a new species, P. terriformae. The comparison with other available strains demonstrated that this new species is not restricted to South America and was also found in coastal area in Europe. The six investigated strains showed a high phenotypic plasticity, which is reflected in the descriptions of several varieties.


Asunto(s)
Chlorophyta/genética , Clima Desértico , Chlorophyta/clasificación , Código de Barras del ADN Taxonómico , Repeticiones de Microsatélite , Filogenia , Suelo
15.
J Phycol ; 55(2): 493-499, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30582760

RESUMEN

Chlorella-like coccoid green algae are widely distributed in almost all terrestrial habitats and belong to different lineages of the Chlorophyceae and Trebouxiophyceae. The Watanabea clade of the Trebouxiophyceae shows a high genetic biodiversity. Re-investigation of the authentic strain of the rarely found W. reniformis showed several morphological differences compared to the original description. To clarify the taxonomic status of Watanabea, we compared several new isolates with similar morphology. Phylogenetic analyses of the SSU and SSU+ITS rDNA sequences revealed that all new isolates were distinct from W. reniformis. The ITS-2/CBC approach clearly demonstrated that the strains belonging to Watanabea represented species. We emended the generic diagnosis of Watanabea, and proposed four new species. One strain, SAG 2552, represented a separate lineage that we propose as a new genus Massjukichlorella with one species M. epiphytica.


Asunto(s)
Chlorella , Biodiversidad , Chlorophyceae , ADN Ribosómico , Filogenia
16.
Syst Biodivers ; 17(8): 811-829, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32256217

RESUMEN

Green algal species of spherical cell shape are generally considered to belong to the genus Chlorella, which are mostly freshwater or terrestrial organisms. Phylogenetic studies have shown that this genus is polyphyletic and belongs to different classes. However, until now, only freshwater or terrestrial strains have been studied. Here we investigated 11 strains of 'marine' Chlorella deposited in public culture collections, which we studied using an integrative approach. These strains were largely isolated from marine rock pools and brackish estuaries. SSU and ITS regions of the nuclear encoded ribosomal DNA were sequenced, ribosomal secondary structures were analysed and cell morphology, salinity tolerance and reproduction were examined. Our results showed that the marine strains are also of polyphyletic origin. Surprisingly, three marine isolates belong to Chlorella vulgaris according to the phylogenetic analyses, but showed a high phenotypic plasticity. Whereas these strains showed the typical morphology of C. vulgaris under freshwater conditions, they increased the cell shape and formed cell packages under marine conditions. In contrast, the other investigated strains showed no changes after changing the media. Two of the investigated strains belong to the genus Chloroidium, and those remaining represent a new genus, Droopiella.

17.
Front Microbiol ; 8: 923, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611738

RESUMEN

Cyanobacteria are found worldwide in various habitats. Members of the picocyanobacteria genera Synechococcus and Prochlorococcus dominate in oligotrophic ocean waters. Other picocyanobacteria dominate in eutrophic fresh or brackish waters. Usually, these are morphologically determined as species of the order Chroococcales/clade B2. The phytoplankton of a shallow, eutrophic brackish lagoon was investigated. Phytoplankton was dominated by Aphanothece-like morphospecies year-round for more than 20 years, along a trophy and salinity gradient. A biphasic approach using a culture-independent and a culture-dependent analysis was applied to identify the dominant species genetically. The 16S rRNA gene phylogeny of clone sequences and isolates indicated the dominance of Cyanobium species (order Synechococcales sensu Komárek/clade C1 sensu Shih). This difference between morphologically and genetically based species identifications has consequences for applying the Reynolds functional-groups system, and for validity long-term monitoring data. The literature shows the same pattern as our results: morphologically, Aphanothece-like species are abundant in eutrophic shallow lagoons, and genetically, Cyanobium is found in similar habitats. This discrepancy is found worldwide in the literature on fresh- and brackish-water habitats. Thus, most Aphanothece-like morphospecies may be, genetically, members of Cyanobium.

18.
J Phycol ; 52(6): 1125-1145, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27734501

RESUMEN

The genera Elliptochloris and Pseudochlorella were erected for Chlorella-like green algae producing two types of autospores and cell packages, respectively. Both genera are widely distributed in different soil habitats, either as free living or as photobionts of lichens. The species of these genera are often difficult to identify because of the high phenotypic plasticity and occasional lack of characteristic features. The taxonomic and nomenclatural status of these species, therefore, remains unclear. In this study, 34 strains were investigated using an integrative approach. Phylogenetic analyses demonstrated that the isolates belong to two independent lineages of the Trebouxiophyceae (Elliptochloris and Prasiola clades) and confirmed that the genera are not closely related. The comparison of morphology, molecular phylogeny, and analyses of secondary structures of SSU and ITS rDNA sequences revealed that all of the strains belong to three genera: Elliptochloris, Pseudochlorella, and Edaphochlorella. As a consequence of the taxonomic revisions, we propose two new combinations (Elliptochloris antarctica and Pseudochlorella signiensis) and validate Elliptochloris reniformis, which is invalidly described according to the International Code for Nomenclature (ICN), by designating a holotype. To reflect the high phenotypic plasticity of P. signiensis, two new varieties were described: P. signiensis var. magna and P. signiensis var. communis. Chlorella mirabilis was not closely related to any of these genera and was, therefore, transferred to the new genus Edaphochlorella. All of the taxonomic changes were highly supported by all phylogenetic analyses and were confirmed by the ITS-2 Barcodes using the ITS-2/CBC approach.


Asunto(s)
Chlorophyta/clasificación , Chlorophyta/genética , Código de Barras del ADN Taxonómico , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Algas/química , ADN de Algas/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Filogenia , Alineación de Secuencia , Especificidad de la Especie
19.
PLoS One ; 10(6): e0127838, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26080086

RESUMEN

Integrative taxonomy is an approach for defining species and genera by taking phylogenetic, morphological, physiological, and ecological data into account. This approach is appropriate for microalgae, where morphological convergence and high levels of morphological plasticity complicate the application of the traditional classification. Although DNA barcode markers are well-established for animals, fungi, and higher plants, there is an ongoing discussion about suitable markers for microalgae and protists because these organisms are genetically more diverse compared to the former groups. To solve these problems, we assess the usage of a polyphasic approach combining phenotypic and genetic parameters for species and generic characterization. The application of barcode markers for database queries further allows conclusions about the 'coverage' of culture-based approaches in biodiversity studies and integrates additional aspects into modern taxonomic concepts. Although the culture-dependent approach revealed three new lineages, which are described as new species in this paper, the culture-independent analyses discovered additional putative new species. We evaluated three barcode markers (V4, V9 and ITS-2 regions, nuclear ribosomal operon) and studied the morphological and physiological plasticity of Coccomyxa, which became a model organism because its whole genome sequence has been published. In addition, several biotechnological patents have been registered for Coccomyxa. Coccomyxa representatives are distributed worldwide, are free-living or in symbioses, and colonize terrestrial and aquatic habitats. We investigated more than 40 strains and reviewed the biodiversity and biogeographical distribution of Coccomyxa species using DNA barcoding. The genus Coccomyxa formed a monophyletic group within the Trebouxiophyceae separated into seven independent phylogenetic lineages representing species. Summarizing, the combination of different characteristics in an integrative approach helps to evaluate environmental data and clearly identifies microalgae at generic and species levels.


Asunto(s)
Chlorophyta/genética , Código de Barras del ADN Taxonómico , Microalgas/genética , Biodiversidad , Chlorophyta/clasificación , Chlorophyta/crecimiento & desarrollo , Clasificación/métodos , Marcadores Genéticos , Variación Genética , Microalgas/clasificación , Microalgas/crecimiento & desarrollo , Filogenia , Especificidad de la Especie
20.
J Phycol ; 51(2): 394-400, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26986533

RESUMEN

The monotypic genus Auxenochlorella with its type species A. protothecoides is so far only known from specific habitats such as the sap of several tree species. Several varieties were described according to physiological performances in culture on different organic substrates. However, two strains designated as Auxenochlorella were isolated from other habitats (an endosymbiont of Hydra viridis and an aquatic strain from an acidic volcano stream). We studied those isolates and compared them with six strains of Auxenochlorella belonging to different varieties. The integrative approach used in this study revealed that all strains showed similar morphology but differed in their SSU and ITS rDNA sequences. The Hydra endosymbiont formed a sister taxon to A. protothecoides, which included the varieties protothecoides, galactophila, and communis. The variety acidicola is not closely related to Auxenochlorella and represented its own lineage within the Trebouxiophyceae. In view of these results, we propose a new species of Auxenochlorella, A. symbiontica, for the Hydra symbiont, and a new genus Pumiliosphaera, with its type species, P. acidophila, for acidophilic strain. These results are supported by several compensatory base changes in the conserved region of ITS-2 and ITS-2 DNA barcodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...