Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 163: 378-391, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36179980

RESUMEN

The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.


Asunto(s)
Hidrogeles , Neoplasias , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Movimiento Celular , Materiales Biocompatibles/farmacología , Células Epiteliales , Matriz Extracelular , Microambiente Tumoral
2.
Adv Funct Mater ; 33(40)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464762

RESUMEN

Capillary scale vascularization is critical to the survival of engineered 3D tissues and remains an outstanding challenge for the field of tissue engineering. Current methods to generate micro-scale vasculature such as 3D printing, two photon hydrogel ablation, angiogenesis, and vasculogenic assembly face challenges in rapidly creating organized, highly vascularized tissues at capillary length-scales. Within metabolically demanding tissues, native capillary beds are highly organized and densely packed to achieve adequate delivery of nutrients and oxygen and efficient waste removal. Here, we adopt two existing techniques to fabricate lattices composed of sacrificial microfibers that can be efficiently and uniformly seeded with endothelial cells (ECs) by magnetizing both lattices and ECs. Ferromagnetic microparticles (FMPs) were incorporated into microfibers produced by solution electrowriting (SEW) and fiber electropulling (FEP). By loading ECs with superparamagnetic iron oxide nanoparticles (SPIONs), the cells could be seeded onto magnetized microfiber lattices. Following encapsulation in a hydrogel, the capillary templating lattice was selectively degraded by a bacterial lipase that does not impact mammalian cell viability or function. This work introduces a novel approach to rapidly producing organized capillary networks within metabolically demanding engineered tissue constructs which should have broad utility for the fields of tissue engineering and regenerative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...